K均值(K-means)聚类算法是无监督聚类(聚类(clustering)是将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇(cluster)”)算法中的一种,也是最常用的聚类算法。K表示类别数,Means表示均值。K-means主要思想是在给定K值和若干样本(点)的情况下,把每个样本(点)分到离其最近的类簇中心点所代表...
对数据集进行聚类划分,属于无监督学习。 2、K-Means: K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。对于给定的一个(包含n个一维以及一维以上的数据点的)数据集X以及要得到的类别数量...
C语言实现Kmeans聚类算法(2)—随机样本可视化zidea2015 立即播放 打开App,流畅又高清100+个相关视频 更多718 2 32:54 App scratch停车挑战编程讲解视频 1307 51 14:55:36 App 完全自学!全网公认最好的机器学习算法教程,同济大佬带你全面解析线性回归、逻辑回归、决策树、支持向量机...10个经典算法! 809 -- ...
1、随机选取数据集中的k个数据点作为初始的聚类中心: 2、分别计算每个数据点到每个中心的距离,选取距离最短的中心点作为其聚类中心: 3、利用目前得到的聚类重新计算中心点: 4、重复步骤2和3直到收敛(达到最大迭代次数或聚类中心不再移动): code: 1#include <stdio.h>2#include <stdlib.h>3#include <math.h...
一维k-means聚两类(c语言实现) 准确的来讲我这段程序算不得真正的k-means算法,这是我在数学建模过程中中针对一维数据聚合为两类的情况下,针对改进的版本!要想学习真正的k-means聚类请不要误入歧途! #include <iostream>//一维k-means聚两类 #include<stdio.h>...
k均值聚类算法(k-means) 前言 在机器学习的各类算法中,分为两类:监督学习算法以及无监督学习算法,一个月前写的ID3决策树算法就是典型的监督学习算法。两者的区别就在于给定的样本是否已经明确具有类别。 今天,在这篇文章里,要给自己备忘一下聚类算法里面,简单但是却应用广泛的算法:k均值聚类算法。
最近在苦于思考kmeans算法的MPI并行化,花了两天的时间先把串行版本实现了。 聚类问题就是给定一个元素集合V,其中每个元素具有d个可观察属性,使用某种算法将V划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。
KMeans是最常见的基于迭代的聚类算法之一。基于迭代的算法的特点是需要对于每个数据进行重复计算,当数据量很大的,将序列运行的CPU算法优化为基于CUDA的GPU并行算法可以大大减少计算时间。 算法描述 KMeans算法输入参数k表示聚类的簇个数,输入含有n个数据点的数据集,输出划分好的k个簇。其中,簇内的元素相似度较高,不...
K-means算法的基本思想是先随机选择K个初始聚类中心,然后迭代地将数据点分配到最近的聚类中心,并更新聚类中心的位置,直到聚类中心不再发生变化或达到预设的迭代次数。 具体步骤如下: 1.随机选择K个初始聚类中心。 2.对每个数据点,计算其到每个聚类中心的距离,将其分配到距离最近的聚类中心的簇。 3.更新每个聚类中...