在C 语言中实现一个深度学习模型可以使用一些开源的库,比如 DarkNet,TensorFlow C API,Caffe 等。你需要了解深度学习的基本原理和 C 语言的编程知识。以下是一个使用 TensorFlow C API 实现的简单的例子: #include<stdio.h>#include<tensorflow/c/c_api.h>intmain(){// 创建一个会话TF_Session*session=TF_Ne...
输出: Khadas VIM3上MobileNet v1 模型平均识别是943.29ms,这并没有发挥出Khadas VIM3的真正实力,比较它NPU算力可以达到5 TOPS,既然NPU这么强就不能浪费,下一篇文章将介绍如何使用Khadas VIM3 NPU部署深度学习模型,另外如果小伙伴们有需要,我可以写一个番外篇,讲解一下tm_classification.c代码 参考:...
现在的深度学习框架一般都是基于 Python 来实现,构建、训练、保存和调用模型都可以很容易地在 Python 下完成。但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直接调用 TensorFlow 的 C/C++ 接口来导入 TensorFlow 预训练好的模型。 1.环境配置点此查看 C/C++ 接口的编译 2. 导入预...
现在的深度学习框架一般都是基于 Python 来实现,构建、训练、保存和调用模型都可以很容易地在 Python 下完成。但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直接调用 TensorFlow 的 C/C++ 接口来导入 TensorFlow 预训练好的模型。 1.环境配置点此查看 C/C++ 接口的编译 2. 导入预...
现在的深度学习框架一般都是基于 Python 来实现,构建、训练、保存和调用模型都可以很容易地在 Python 下完成。但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 C/C++ 间接调用 Python 的方式来实现在 C/C++ 程序中调用 TensorFlow 预训练好的模型。
在C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现,现在的深度学习框架一般都是基于Python来实现,构建、训练、保存和调用模型都可以很容易地在Python下完成。但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过C/C++间
3.1 下载预训练模型 从百度云或GoogleDrive下载预训练模型。目前仅支持 C3D 的预训练模型。 3.2 配置数据集和预训练模型路径 在 中配置数据集和预训练模型路径 。 这一步仅修改上图红框内的路径内容即可。 3.3 修改 label.txt 文件
百度试题 题目下列哪些是深度学习常用的模型 A.卷积神经网络B.循环神经网络C.递归神经网络D.深度增强学习相关知识点: 试题来源: 解析 ABD 反馈 收藏
大神卡帕西(Andrej Karpathy)刚“复工”,立马带来神作:纯 C 语言训练 GPT,1000 行代码搞定!,不用现成的深度学习框架,纯手搓。发布仅几个小时,已经揽星 2.3k。 它可以立即编译和运行,和 PyTorch 完全兼容。卡帕西使用的示例是 GPT-2,但 Llama 2 和 Gemma 等也适用。