buy and sell stocks 在leetcode现在总共有5 道题。 Best Time to Buy and Sell Stock 这道题是基础,只能transaction一次,所以我们用 Best Time to Buy and Sell Stock II 这道题表示可以一直transaction,所以只需要下一次比上一次高,那就加一次。 Best Time to Buy and Sell Stock with Cooldown 这道题属...
Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before ...
https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/ Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most k transactions. Solution global(n, k) 表示前n天中一...
1.题目描述: Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may n...
:rtype: int"""res=0foriinrange(1,len(prices)): temp= prices[i] - prices[i-1]iftemp <=0:continueelse: res+=tempreturnres 参考: 下面的更快,因为索引查找的次数少一些! classSolution(object):defmaxProfit(self, prices):""":type prices: List[int] ...
Explanation: transactions = [buy, sell, cooldown, buy, sell] 题目如下:本题和【leetcode】714. Best Time to Buy and Sell Stock with Transaction Fee几乎是一样的,一个是有交易手续费,一个是有CD时间。在【leetcode】714. Best Time to Buy and Sell Stock with Transaction Fee的基础上,dp[i][0...
Best time to buy and sell stocks IV 题目 https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iv/ Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit....
View Code 别人代码: View Code 学习之处: diff的变量命名不错 if(null==stocks || stocks.length==0) return 0; int maxProfit = 0 ; int cur = stocks[0]; for(int stock : stocks){ if(stock > cur) maxProfit += (stock-cur);
1.题目描述 Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (ie, you must sell the ...