对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
这次介绍的流程主要由A中的数据的质控(Trim_galore)、数据比对(Hisat2)、数据的定量(Featurecounts和cufflinks)三部分构成。(后续的差异分析在R中完成,因此另行介绍,每个软件的详细说明有空也会另行介绍) RNA-SEQ.png 1.数据的质控(Trim_galore) 测序完成后,分析的起点是数据文件,其中包含称为碱基的测序读数,通常...
Bulk RNAseq上游比对1:大致流程与conda环境 - 简书 (jianshu.com) Bulk RNAseq上游比对2:下载数据、质控 - 简书 (jianshu.com) Bulk RNAseq上游比对3:比对mapping - 简书 (jianshu.com) Step1:下载数据 1.1 下载公共数据框的测序数据 示例数据:GSE158623https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
众所周知,RNAseq可以分为Bulk-RNAseq与scRNAseq。Bulk-RNAseq的数据量较小,单个raw fastq.gz文件<5G,普通的Mac笔记本就可以带得动,做比对和定量,完全自足;但是scRNAseq数据量较大,单个raw fast.gz文件 > 60G,且需要专门的软件,例如10x Genomics 需要配合CellRanger软件;墨卓单细胞测序平台需要配合Mobivision软件;...
今天我们来讲一讲bulk转录组测序的数据清洗部分。 RNA-Seq是技术相对更成熟,应用最广泛,最适合生物信息学人门的方向。bulk RNA-Seq是最普遍的转录组测序方法,所谓bulk就是我们测的是所有细胞的总RNA(mRNA)取平均值代表每个基因的表达量。 我们从公司得到的原始的下机数据是fastq格式的文件如图 ...
这篇文章将深入探讨bulk RNA-Seq数据清洗的重要步骤。作为最常用且适合生物信息学入门的技术,bulk RNA-Seq通过收集所有细胞的总RNA(mRNA)并取平均值,为我们提供了每个基因表达量的概览。从实验室获取的原始数据通常是fastq格式,这是数据处理的起点。首先进行质量控制和过滤,常用工具如fastp和fastqc。
转录组测序(bulk RNA-Seq)的详细分析流程转录组测序分析分为两个主要阶段:上游数据处理和下游数据分析,它们各自包含一系列步骤以揭示基因表达的深度洞察。上游数据处理首先,进行质量控制,通过fastqc和multiqc评估数据的准确性和可靠性,关注序列长度分布和测序错误率等指标。接着,使用trim-galore预处理...
BulkRNA-seq转录组分析 Reference :我们⾃⼰测得的数据:交代⼀下需要准备的数据:⾸先要有双端测序的.fa.qz⽂件,要⽤⽹上下好的gene注释⽂件,hisat2需要⽤到,具体如何下载,见上⾯两个链接 注:也可以利⽤.fa⽂件⽣成对应的索引⽂件,命令如下:$HISAT_HOME/hisat-build $HISAT_...
3. 比对,生成bam文件:“将RNA-seq的测序reads使用hisat2比对对参考基因租组” /home/glab/Shanyr/software/hisat2-2.1.0/hisat2 -p16-x ../../../bulk_rnaseq/jky-z001/refdata-cellranger-hg19-3.0.0/genes/genome_tran -1../neg/neg_R1.fq.gz -2../neg/neg_R2.fq.gz -S ../neg/neg...
转录组测序(bulk RNA-Seq)分析主要包括上游数据处理,下游数据分析。 上游数据处理是指将测得的原始的reads变成基因表达矩阵。 下游数据分析是指对表达矩阵根据生物学问题和意义进行可视化分析。 一 上游数据处理 1.质量控制:对原始测序数据进行质量评估,检查测序质量指标如序列长度分布、测序错误率等,确保数据的准确性和...