转录组测序(bulk RNA-Seq)分析主要包括上游数据处理,下游数据分析。 上游数据处理是指将测得的原始的reads变成基因表达矩阵。 下游数据分析是指对表达矩阵根据生物学问题和意义进行可视化分析。 一 上游数据处理 1.质量控制:对原始测序数据进行质量评估,检查测序质量指标如序列长度分布、测序错误率等,确保数据的准确性和...
salmon是一款不通过序列比对就可以快速完成生物学定量的RNA-seq数据分析工具。它的使用流程包括两步:1.建立索引 2.对reads进行基因表达定量(quantification)。 第一步,提取转录本-基因对应关系 转录谱文件可以到Ensembl下载, 转录谱参考文件内容如下: >ENST00000632684.1 cdnachromosome:GRCh38:7:142786213:142786224:1g...
转录组测序(bulk RNA-Seq)的详细分析流程转录组测序分析分为两个主要阶段:上游数据处理和下游数据分析,它们各自包含一系列步骤以揭示基因表达的深度洞察。上游数据处理首先,进行质量控制,通过fastqc和multiqc评估数据的准确性和可靠性,关注序列长度分布和测序错误率等指标。接着,使用trim-galore预处理数...
Bulk RNAseq上游比对1:大致流程与conda环境 - 简书 (jianshu.com) Bulk RNAseq上游比对2:下载数据、质控 - 简书 (jianshu.com) Bulk RNAseq上游比对3:比对mapping - 简书 (jianshu.com) image.png 要点一、大致流程 如上流程图所示,一般包括三大步骤:下载数据--质控--比对 1、下载数据 主要包括两类数据:...
Bulk-RNAseq的数据量较小,单个raw fastq.gz文件<5G,普通的Mac笔记本就可以带得动,做比对和定量,完全自足;但是scRNAseq数据量较大,单个raw fast.gz文件 > 60G,且需要专门的软件,例如10x Genomics 需要配合CellRanger软件;墨卓单细胞测序平台需要配合Mobivision软件;非常消耗运存和内存,一般情况下需要利用服务器做...
对illumina数据进行处理,利用 RNA-Seq 发现新的 RNA 变体和剪接位点,或量化 mRNA 以进行基因表达分析等。对两组或多组样本的转录组数据,通过差异表达分析和对所发现的差异表达基因集合进行功能富集分析以推断生物学功能。 数据准备: 数据下载: Humangenome(GRCh38/hg3):Index of /goldenPath/hg38/chromosomes (ucs...
【1】Bulk RNA-seq和scRNA-seq数据收集与预处理 文献解读 TCGA、GEO公共数据下载 差异表达基因分析 富集分析 【翰佰尔生物】 01:13:51 【2】预后模型构建和多种验证方法 单因素多因素COX模型 独立预后 绘制生存曲线 ROC曲线 验证方法【翰佰尔生物】 01:07:14 【3】单细胞分析零代码操作流程 单细胞技术原理...
在进行Bulk-RNAseq数据分析时,首要步骤是使用STAR和Rsubread软件进行比对和定量,最终目的是获取counts文件。首先,需要在服务器上安装Anaconda,然后下载并安装STAR。在安装成功后,需要构建基因组索引文件,这需要提供基因组的fa文件和注释的gtf文件。通过输入命令,可以构建所需的索引文件。接下来,利用STAR...
上一期我们探讨了Bulk RNA-seq的价值和学习成本(第1期. 快2024年了,还有必要学习Bulk RNA-seq?),如果你认可了学习Bulk RNA-seq分析的必要性,那我们就一起来开始零基础学习之旅。今天的任务是主成分分析(PCA)图,如果时间紧,可以简单看看整体的分析流程;如果有时间,可以跟着我们的代码和数据,一起练习。
大组织RNA-Seq样本中的差异基因表达 采用DESeq2标准工作流程来探索UTI和对照组之间的差异表达基因。队列间存在基线差异,因此在负二项式回归模型中调整了SOFA、年龄、性别和天数。研究结果显示,相比对照组,UTI组中被抑制的基因数量多于被...