第四步,输出这个二叉查找树的层序遍历序列。 PS:类似1064 Complete Binary Search Tree,都要先构造出 二叉树的存储结构,然后根据中序遍历序列,通过中序遍历的方式为每一个结点赋值。 1#include<iostream>2#include<queue>3#include<algorithm>4usingnamespacestd;56constintmaxn =200;7structNode {8intdata;9int...
给出一棵二叉搜索树(给出每个结点的左右孩子),且已知根结点为0,求并且给出应该插入这个二叉搜索树的数值,求这棵二叉树的层序遍历 分析 给了下标,肯定用静态数组实现 利用的性质:二叉搜索树中序遍历肯定有有序 对所给key进行排序,得到中序遍历次序 利用中序遍历次序,对树进行遍历,可以得到存储次序(用indexindex...
助力山大计算机考研|图解pat甲级:1099 Build A Binary Search Tree — 二叉搜索树 这是专栏更新的第七天,加油陌生人! 这道题的题目可能有点绕,但大可放心在应试中不可能出现这样复杂的题目。但通过本题你应该掌握如下知识 : 1.树常见的几种遍历方式是否掌握 2.二叉搜索树中序遍历有序的特点是否清楚 3.能否在...
usingnamespacestd; constintmaxn=110; 由于题目直接给出的是结点编号的关系,因此使用二叉树的静态写法会更方便 key:把给定序列排序后按照中序遍历放入树中 structnode{//二叉树的静态写法 intdata; intlchild,rchild; }Node[maxn]; //n为结点个数,in为中序序列,num为已经填入/输出的结点个数 intn,in[max...
1099. Build A Binary Search Tree (30) A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys ...
Both the left and right subtrees must also be binary search trees. Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to out...
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greater than or equal to the node's key...
vector<int> v; queue<int> q; vector<tree&...
//这个之前为第2、3步std::queue<int>q;//利用队列对tree进行层序遍历q.push(0);while(!q.empty()){inttmp=q.front();q.pop();if(nodes[tmp].left!=-1)q.push(nodes[tmp].left);if(nodes[tmp].right!=-1)q.push(nodes[tmp].right);if(tmp!=0){std::cout<<" ";}std::cout<<tree[...
1099. Build A Binary Search Tree A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater ...