Boost电路,又称升压电路,顾名思义,这种变换器只能升压。基本拓扑如下图所示: 电路元件和buck电路基本一致,只是开关器件、储能电感、二极管的位置有变化。 2.1 Boost电路工作原理 如下图左,当开关管导通的时候,输入的电压对电感充电,形成的回路是:输入Vi→电感L→开关管Q; 如下图右,当开关管关断时,输入的能量和...
电源是电力系统中不可或缺的组成部分,根据其输入和输出的类型,我们通常将其分为三大类:AC/DC(交流转直流)、DC/DC(直流转直流)以及DC/AC(逆变器)。接下来,我们将深入探讨其中两种常见的电路类型——BUCK与BOOST。2.1 开关电源的定义 开关电源,一种通过电力电子技术来控制的电源,其核心在于对开关管的...
常规的Buck-Boost电路,Vo=-Vin*D/(1-D),输出电压的极性和输入电压相反。 简要的四开关Buck-Boost电路,Vo=Vin*D/(1-D),输出电压的极性与输入电压相同。 四开关buck-boost的拓扑很简单,如下图。 对于四开关buck-boost,它本身有一种非常传统简单的控制方式。 那就是Q1和Q3同时工作,Q2和Q4同时工作。并且两组...
电感电流峰值Ipk定义为电感电流直流分量Idc和交流分量Iac的加和,其中交流分量定义为纹波电流峰峰值Ipp的一半,即Iac= 1/2*Ipp。 图2.4.1:电感电流峰值计算式 由于Buck-Boost拓扑中二极管与输出端串联,因此电感电流的直流分量Idc不等于输出电流Io,而是存在以下换算关系:Idc= Io/ (1-D)。因此Idc会比Io大许多,设计...
在开关周期中,iL的电路波形会出现中间不连续的情况,这种工作模式被称为非连续导通模式DCM。在DCM模式下工作时,电感电流的平均值IL会小于其峰值电流的一半。在BUCKBOOST变换器的电感电流处于非连续导通模式DCM的情况下,电路展现出三种不同的工作状态。其中,ton和toff1这两种状态与连续导通模式CCM中的情况一致,而...
Buck/Boost型开关电源,伴随开关管的开和关,储能电感的电流波形如图1-3所示: 从图中可以看到,电感的电流波形等价于在直流IDC上叠加一个IP-P值为ΔI的交流。因而,IDC成为输出电流IO,主要消耗在负载上;交流ΔI则消耗在负载电容的ESR(Equation Serial Resistance)上,成为输出纹波Vripple。
图1.BUCK-BOOST电路简 当功率管Q1闭合时,电流的流向见图2左侧图。输入端, 电感L1直接接到电源两端,此时电感电流逐渐上升。导通瞬态时di/dt很大,故此过程中主要由输入电容CIN供电。输出端,COUT依靠自身的放电为RL提供能量。 当功率管Q1关断时,电流的流向见图2右侧图。输入端VIN给输入电容充电。输出端,由于电感的...
其中,Buck电路和Boost电路是DC-DC变换器最基本的两种拓扑形式。 DC-DC变换器的主要功能是变换直流电压等级,隔离变压器则根据实际情况进行选取,其基本作用是输入输出之间的隔离,也可以进行变压用。 无论哪一种DC-DC变换器,主回路使用的元器件都是功率半导体、电感、电容。 目前使用的开关器件主要有MOSFET、IGBT以及二极...
电路原理 Buck-Boost电路简图如图1。 当功率管Q1闭合时,电流的流向见图2左侧图。 输入端,电感L1直接接到电源两端,此时电感电流逐渐上升。导通瞬态时di/dt很大,故此过程中主要由输入电容CIN供电。输出端,COUT依靠自身的放电为RL提供能量。当功率管Q1关断时,电流的流向见图2右侧图。输入端VIN给输入电容充电。输出端...
图3所示,为稳态条件下BOOST电路工作于状态1的重要节点电压电流波形。该状态下,电感两端电压为Vi。根据伏秒定律, 其中,V=Vi,dt用开通时间ton代替,得到: 图4. 状态2工作波形 当开关管关断时刻如图4,二极管D1导通,电路工作于状态2,电感两端电压为Vin-Vo(忽略二极管压降),同理可得: ...