Bailey, DH (1988) The Computation of a to 29.360.000 decimal digits using Borweins quartically convergent algorithm. Math. Comput. 50: pp. 283-96D. H. Bailey, The Computation of Pi to 29,360,000 Decimal Digits
org/impering-bor wein-algorithm in-Java/Borwein 的算法是 Jonathan 和 Peter Borwein 为计算 1/π的估计而设计的计算。他们构思了一些不同的算法。然而,以下在 Java 中用四次汇编实现 Borwein 算法实际上确定了 Pi,收敛速度过快。原则上,a 将四次幂合并到 1/π。每强调一次,正确数字的数量就这样翻了两番...
using the built-in PSLQ algorithm 132 U. Kortenkamp et al. 2 Experimental mathematics: From the mathematics laboratory to mathematics classrooms The idea of mathematics laboratories for learning mathematics is not new (Maschietto & Trouche, 2010), but the integration of powerful computation tools...
The author has implemented Borweins' quartically convergent algorithm for $1/\\pi$, using a prime modulus transform multi-precision technique, to compute over 29,360,000 digits of the decimal expansion of $\\pi$. The result was checked by using a different algorithm, also due to the ...
We show that an iteration of the Borwein-Borwein quartic algorithm for \\(\\pi \\) is equivalent to two iterations of the Gauss–Legendre quadratic algorithm for \\(\\pi \\) , in the sense that they produce exactly the same sequence of approximations to \\(\\pi \\) if performed ...
The Computation of Pi to 29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm. Mathematics of Computation, 150:283-296, 1988.David H. Bailey, The computation of π to 29,360,000 decimal digits using Borweins' quar- tically convergent algorithm, Mathematics of Computation ...