用标准化后的特征训练语音识别模型.此外,还利用子空间高斯混合模型(Subspace Gaussian Mixture Model, SGMM)将一般说话者的语音和信息加入到模型中,减小语料稀疏性对模型的影响.通过在Thchs30和ST-CMDS数据集对模型进行评估,结果显示,基于MCFN的BLSTM-CTC语音识别模型的识别字错误率(WER)较传统的语音识别模型有所降低...
在验证码识别中,我们将CNN提取的特征输入到BLSTM中,通过双向建模来捕捉字符之间的关联性。 最后,我们使用了连接时序分类(CTC)来实现不定长序列的识别。CTC是一种针对序列数据的损失函数,它可以在不需要预先对齐输入序列和输出序列的情况下进行训练。这意味着,即使验证码中的字符数量、位置等信息发生了变化,我们的模型...
神经网络这块可以讲一讲,默认提供的组合是CNN5(CNN5层模型)+BLSTM(Bidirectional LSTM)+CTC,亲测收敛最快,但是训练集过小,实际图片变化很大特征很多的情况下容易发生过拟合。DenseNet可以碰运气在样本量很小的情况下很好的训练出高精度的模型,为什么是碰运气呢,因为收敛快不快随机的初始权重很重要,运气好前500步可能...
原文链接:OCR算法-CNN+BLSTM+CTC架构 由于作者使用了Boost1.57-Vc14,而1.57的VC14版本作者没有给出下载链接,因此需要自行编译,建议换掉作者的第三方库,使用其他的库,比如:这篇文章:VS编译Caffe非常简单。网盘:3rdlibVC14。 有少量的改动,如有疑问,请移步原文,直接到作者GitHub界面...链接:https://github.com/...
CNN+BLSTM+CTC的验证码识别从训练到部署 https网络安全打包 长话短说,开门见山,验证码是网络安全的一个重要组成部分,提高了暴力尝试破解的成本,而验证码识别是其反面,本文将带领大家看看如何使用深度学习进行验证码的识别,各厂可以通过本文来认识图形验证码的弱点和不可靠性。 FB客服 2019/05/09 9910 实战:CNN+BL...
神经网络这块可以讲一讲,默认提供的组合是CNN5(CNN5层模型)+BLSTM(Bidirectional LSTM)+CTC,亲测收敛最快,但是训练集过小,实际图片变化很大特征很多的情况下容易发生过拟合。DenseNet可以碰运气在样本量很小的情况下很好的训练出高精度的模型,为什么是碰运气呢,因为收敛快不快随机的初始权重很重要,运气好前500步可能...
笔者选用的时下最为流行的CNN+BLSTM+CTC进行端到端的不定长验证码识别,代码中预留了DenseNet+BLSTM+CTC的选项,可以在配置中直接选用。首先,介绍个大概吧。 网格结构predict-CPUpredict-GPU模型大小 CNN5+Bi-LSTM+H64+CTC 15ms 28ms 2mb CNN5+Bi-LSTM+H16+CTC 8ms 28ms 1.5mb DenseNet+Bi-LSTM+H64+CTC 60...
笔者选用的时下最为流行的CNN+BLSTM+CTC进行端到端的不定长验证码识别,代码中预留了DenseNet+BLSTM+CTC的选项,可以在配置中直接选用。首先,介绍个大概吧。 网格结构predict-CPUpredict-GPU模型大小 CNN5+Bi-LSTM+H64+CTC 15ms 28ms 2mb CNN5+Bi-LSTM+H16+CTC 8ms 28ms 1.5mb DenseNet+Bi-LSTM+H64+CTC 60...
笔者选用的时下最为流行的CNN+BLSTM+CTC进行端到端的不定长验证码识别,代码中预留了DenseNet+BLSTM+CTC的选项,可以在配置中直接选用。首先,介绍个大概吧。 H16/H64指的是Bi-LSTM的隐藏神经元个数num_units,这里注意,你没有看错,也没有写反,LSTM有时序依赖,tf.contrib.rnn.LSTMCell的实现没能很充分的利用GPU...
随着深度学习理论的兴起,BLSTM-CTC模型成为目前主流的语音识别声学模型之一.本文借鉴国内外语音识别框架,结合藏语言文字特点,提出基于BLSTM-CTC模型的藏语语音识别方法.该方法以识别非特定人藏语连续语音为目标,通过提取语音的MFCC特征参数,建立了以音素为建模单元的藏语语音声学模型.在不同建模单元下LSTM-... 查看全部>...