softmax_entropy,binary_entropy,sigmoid_entropy 几种交叉熵之间的区别: 参考:
sigmoid + binary_cross_entropy reciprocal表示取倒数,binary_cross_entropy计算的是负的对数似然函数(这样求极大转化成求极小,可以梯度下降) def sigmoid(x): return (1+ (-x).exp()).reciprocal() defbinary_cross_entropy(input, y): return-(pred.log()*y + (1-y)*(1-pred).log()).mean() ...
2. 样本不平衡对Binary Cross Entropy的影响 当样本类别不平衡时,即某一类的样本数量远多于另一类,BCE损失函数会倾向于优化数量较多的类别,因为数量较多的类别在损失函数中的占比更大。这会导致模型在预测时偏向数量多的类别,从而降低对少数类的识别能力。 3. 解决样本不平衡问题的几种方法 数据层面: 过采样:增...
pytorch binary_cross_entropy 多分类 如何使用逻辑回归 (logistic regression)来解决多类别分类问题 第一个例子:假如说你现在需要一个学习算法能自动地将邮件归类到不同的文件夹里,或者说可以自动地加上标签,那么,你也许需要一些不同的文件夹,或者不同的标签来完成这件事,来区分开来自工作的邮件、来自朋友的邮件、...
在PyTorch框架中,处理二分类问题时经常会用到两种损失函数:binary_cross_entropy(BCELoss)和binary_cross_entropy_with_logits(BCEWithLogitsLoss)。尽管它们的目的相似,但在使用方法和内部实现上存在显著差异。本文将简明扼要地介绍这两种损失函数,帮助读者在实际应用中选择合适的工具。 一、概述 BCELoss(Binary Cross-...
binary_crossentropy和BinaryCrossentropy的区别 binary_crossentropy和BinaryCrossentropy的区别 只能说官⽅的命名有点太随意,使⽤上⼆者有点细微区别。⼀般compile的时候,使⽤的是⼩写的binary_crossentropy y_true = [[0., 1.], [0., 0.]]y_pred = [[0.6, 0.4], [0.4, 0.6]]# ...
binary_crossentropy的公式binary_crossentropy的公式 二分类交叉熵(Binary Cross Entropy)是在深度学习中常用的一种损失函数,用于衡量观测值和预测值之间的差异。在理解二分类交叉熵之前,我们先来了解一下交叉熵的概念。 交叉熵(Cross Entropy)是信息论中一种常用的度量两个概率分布之间差异的方法。在深度学习中,我们...
F.binary_cross_entropy_with_logits函数和 F.binary_cross_entropy函数的reduction 参数都默认是‘mean’模式,直接使用默认值的话,结果是320个样本点的二元交叉熵的平均值, 若要计算8个图像样本的二元交叉熵的平均值,可以设置reduction=‘sum’ ,这样能得到320个样本点的二元交叉熵的和,然后除以batch_size 就能得到...
对于二分类问题,损失函数用binary_crossentropy 对于多分类问题 如果label是one-hot编码,用categorical_crossentropy 如果label是整数编码,用sparse_categorical_crossentropy 备注: one-hot编码就是在标签向量化的时候,每个标签都是一个N维的向量(N由自己确定),其中这个向量只有一个值为1,其余的都为0 ...
关于binary_crossentropy和categorical_crossentropy的区别 deliciouspoison student 10 人赞同了该文章 看了好久blog,感觉都不够具体,真正到编程层面讲明白的没有看到。 下午自己摸索了一下,大概算明白了: 以下结论基于keras 1.CECE=−∑i=0nyilogfi(xi) ...