void InOrderprint(TreeNode* root) {//中序打印树 if (root == nullptr) return; InOrderprint(root->left); cout << root->val << " "; InOrderprint(root->right); } int main(int argc, char* argv[]) { vector<int> vec = { 8,4,3,2,1,5,6,7 }; BST bst; bst.buildBST(vec...
travel(tree.rchild) //对右孩子递归调用 } } 递归遍历二叉树可以参考递归函数的定义与实现部分的内容: 1递归函数 recursive function :输出正整数N各个位上的数字 2 还可以参考后面启动代码里面的其他已经实现的递归函数,二叉树的很多操作都是通过递归函数实现的。 例如,可以参考 print_in_order_recursive 的实现。
publicclassBinarySearchTree{// 树的根节点privateNodetree;publicvoidinsert(intvalue){// 判断树为空直接返回新节点if(tree==null){tree=newNode(value);return;}// p 探测前进的指标Nodep=tree;while(p!=null){// 如果插入值大于当前节点,在当前节点的右子树中查找if(value>p.data){// 如果该节点的右子...
Given a binary search tree, print the elements in-order iteratively without using recursion.Note:Before you attempt this problem, you might want to try coding a pre-order traversal iterative solution first, because it is easier. On the other hand, coding a post-order iterative version is a ...
class tree_node: def __init__(self, key = None, left = None, right = None): self.key = key self.left = left self.right = right class binary_search_tree: def __init__(self): self.root = None def preorder(self): print 'preorder: ', ...
在下文中一共展示了BinaryTree.PrintInorder方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。 示例1: Main ▲點讚 7▼ staticvoidMain(string[] args){//constructing the main fieldsvarreadFromConsole =newReadFromConsole...
python BinaryTree库文件 python binary search tree 1. 定义 二叉查找树(Binary Search Tree),又称为二叉搜索树、二叉排序树。其或者是一棵空树;或者是具有以下性质的二叉树: 若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值 若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值...
.traversePreOrder(process: process) } //后序遍历 public func traversePostOrder(process: (T) -> Void) { left?.traversePostOrder(process: process) right?.traversePostOrder(process: process) process(value) } 要打印出从低到高排序的树的所有值,您可以编写:tree.traverseInOrder { value in print(...
if__name__=='__main__':arr=[5,3,4,0,2,1,8,6,9,7]T=Tree()fori in arr:T.insert(i)print('BST in-order traversal---')T.traversal()print('\ndelete test---')fori in arr[::-1]:print('after delete',i,end=',BST in-order is = ')T.delete(i)T.traversal()print() ...
As we'll see, binary trees store data in a non-linear fashion. After discussing the properties of binary trees, we'll look at a more specific type of binary tree—the binary search tree, or BST. A BST imposes certain rules on how the items of the tree are arranged. These rules ...