Given a binary search tree, print the elements in-order iteratively without using recursion.Note:Before you attempt this problem, you might want to try coding a pre-order traversal iterative solution first, because it is easier. On the other hand, coding a post-order iterative version is a ...
这个遍历方式也是LeetCode中 Binary Tree Inorder Traversal 一题的解法之一。 附题目,Binary Tree Inorder Traversal Given a binary tree, return theinordertraversal of its nodes' values. For example: Given binary tree{1,#,2,3}, 1 \ 2 / 3 return[1,3,2]. Note:Recursive solution is trivial,...
Given the root of a binary tree, return the inorder traversal of its nodes' values. Example 1: Input: root = [1,null,2,3] Output: [1,3,2] Example 2: Input: root = [] Output: [] Example 3: Input: root = [1] Output: [1] Constraints: The number of nodes in the tree is...
Preorder traversal starts printing from the root node and then goes into the left and right subtrees, respectively, while postorder traversal visits the root node in the end. #include<iostream>#include<vector>using std::cout;using std::endl;using std::string;using std::vector;structTreeNode{...
Leetcode 94: Binary Tree Inorder Traversal-中序遍历 自动驾驶搬砖师 一步一个台阶,一天一个脚印 一、题目描述 给定一个二叉树,返回它的中序遍历。 二、解题思路 2.1 递归法 时间复杂度 O(n) 空间复杂度 O(n) 2.2 迭代法 时间复杂度 O(n) 空间复杂度 O(n)(1) 同理创建一个Stack,然后按左/中/右...
12 vector<int> inorderTraversal(TreeNode *root) { 13 vector<int> res; 14 if(root==NULL) return res; 15 stack<TreeNode*> s; 16 TreeNode* cur=root; 17 while(cur||!s.empty()){ 18 while(cur!=NULL){ 19 s.push(cur); 20 cur=cur->left; ...
94. Binary Tree Inorder Traversal 递归的代码是以前数据结构书上常见的: 非递归用stack模拟中序遍历,要理解啊,不能死记硬背。注意while条件和while里面的if。 MAR 25TH 这题今天做98. Validate Binary Search Tree 的时候又来复习了一遍,又忘的差不多了。。记得当时还在考虑为什么while里面要用||而不是&&...
Inorder traversal Postorder traversal Essentially, all three traversals work in roughly the same manner. They start at the root and visit that node and its children. The difference among these three traversal methods is the order with which they visit the node itself versus visiting its children....
Inorder traversal Postorder traversal Essentially, all three traversals work in roughly the same manner. They start at the root and visit that node and its children. The difference among these three traversal methods is the order with which they visit the node itself versus visiting its children....
# tree definitionclassTree(object):def__init__(self,root=None):self.root=root# node in-order traversal(LDR)deftraversal(self):traversal(self.root)# insert nodedefinsert(self,value):self.root=insert(self.root,value)# delete nodedefdelete(self,value):self.root=delete(self.root,value) ...