def search(self, node, parent, data): if node is None: return False, node, parent if node.data == data: return True, node, parent if node.data > data: return self.search(node.lchild, node, data) else: return self.search(node.rchild, node, data) # 插入 def insert(self, data):...
二叉搜索树(Binary Search Tree,BST),又称为二叉搜索树,二叉排序树,是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
获取树中最大key值节点和最key值小节点: find_max() find_min() ;;; class tree_node: def __init__(self, key = None, left = None, right = None): self.key = key self.left = left self.right = right class binary_search_tree: def __init__(self): self.root = None def preorder...
Python Binary Search Tree 二叉搜索树 二叉搜索树,也叫二叉查找树(Binary Search Tree,BST),特性是每个结点的值都比左子树大,比右子树小。中序遍历是递增的 实现 find_item(item, root) —— 寻找树中等于某个值的结点,利用 BST 的特性,若一个结点比该值大,则往结点的左边寻找,若一个结点比该值...
数据结构之二叉树(Binary Tree)_python实现 1.二叉树的类定义 2.二叉树的基本性质 3.遍历二叉树 3.1前序遍历 3.2中序遍历 3.3后序遍历 3.4层次遍历 4.二叉树的应用 4.1二叉搜索树 4.2平衡二叉树 4.3红黑树 4.4线段树 4.5堆 5.参考文献 1.二叉树的类定义...
# class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def generateTrees(self, n: int) -> List[Optional[TreeNode]]: return self.helper(1, n) def helper(self, l, r): if l > r:...
二叉树的遍历 class treeNode: def __init__(self, x): self.val = x self.left = None self.right = None 深度优先搜索(Depth First Search, DFS)非递归的版本在完整代码中前序遍历 PreOrder Traversal:根-左结点-右结点 def preorder(root): if root is None: return [] return...
有关二叉树的做题笔记,Python实现 二叉树的定义 # Definition for a binary tree node.classTreeNode:def__init__(self,x):self.val=x self.left=Noneself.right=None 98. 验证二叉搜索树 Validate Binary Search Tree LeetCodeCN 第98题链接 第一种方法:中序遍历二叉树存入数组,与直接升序排序去重后的原二...
# A Python class that represents an individual node# in a Binary TreeclassNode:def__init__(self,key):self.left=Noneself.right=Noneself.val=key # Python program to introduce Binary Tree# A class that represents an individual node in a# Binary TreeclassNode:def__init__(self,key):self....
class Node(object): def __init__(self, payload): self.payload = payload self.left = self.right = 0 # this concludes the "how to represent" asked in the question. Once you # represent a BST tree like this, you can of course add a variety of # methods to modify it, "walk" over...