然而,f.binary_cross_entropy_with_logits所使用的公式稍有不同。这个函数在计算损失时考虑了logits(未经softmax处理的原始输出)和labels(真实标签)。其数学公式如下: L=1−tlog (1+e−z)L = 1 - t \log(1 + e^{-z})L=1−tlog(1+e−z) 其中: zzz 是模型的logits输出。 ttt 是与zzz对应的...
F.binary_cross_entropy_with_logits函数和 F.binary_cross_entropy函数的reduction 参数都默认是‘mean’模式,直接使用默认值的话,结果是320个样本点的二元交叉熵的平均值, 若要计算8个图像样本的二元交叉熵的平均值,可以设置reduction=‘sum’ ,这样能得到320个样本点的二元交叉熵的和,然后除以batch_size 就能得到...
sparse_softmax_cross_entropy_with_logits 是 softmax_cross_entropy_with_logits 的易用版本,除了输入参数不同,作用和算法实现都是一样的。 区别是:softmax_cross_entropy_with_logits 要求传入的 labels 是经过 one_hot encoding 的数据,而 sparse_softmax_cross_entropy_with_logits 不需要。 五、binary_cross...
r"""Function that measures Binary Cross Entropy between target and input logits. See :class:`~torch.nn.BCEWithLogitsLoss` for details. Args: input: Tensor of arbitrary shape as unnormalized scores (often referred to as logits). target: Tensor of the same shape as input with values between ...
区分BinaryCrossEntropy、BCELoss和BCEWithLogitsLoss 0. 缘起 笔者在重构mindspore/models下stargan代码时,发现了ClassificationLoss类,其代码如下: class ClassificationLoss(nn.Cell): """Define classification loss for StarGAN""" def __init__(self, dataset='CelebA'): ...
这个函数传入的 logits 是 unscaled 的,既不做 sigmoid 也不做 softmax ,因为函数实现会在内部更高效得使用 softmax 。 softmax_cross_entropy_with_logits计算过程 1、对输入进行softmax softmax公式 举个例子:假设你的输入S=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属...
binary_cross_entropy_with_logits 接受任意形状的输入,target要求与输入形状一致。切记:target的值必须在[0,N-1]之间,其中N为...
在PyTorch中,binary cross entropy 可以通过 torch.nn.BCELoss 类或torch.nn.functional.binary_cross_entropy_with_logits 函数来使用。两者的主要区别在于输入的形式: torch.nn.BCELoss 接受经过sigmoid激活的概率值(介于0和1之间)作为输入。 torch.nn.functional.binary_cross_entropy_with_logits 接受模型的logits(...
示例1: _weighted_cross_entropy_loss ▲點讚 7▼ # 需要導入模塊: from torch.nn import functional [as 別名]# 或者: from torch.nn.functional importbinary_cross_entropy_with_logits[as 別名]def_weighted_cross_entropy_loss(preds, edges):""" Calculate sum of weighted cross entropy loss. "...
softmax_cross_entropy_with_logits计算过程 1、对输入进行softmax softmax公式 举个例子:假设你的输入S=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。