基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践 1.GRU简介 GRU(Gate Recurrent Unit)门控循环单元,是[循环神经网络](RNN)的变种种,与 LSTM 类似通过门控单元解决RNN 中不能长期记忆和反向传播中的梯度等问题。与 LSTM 相比,GRU 内部的网络架构较为简单。 GRU 内部结构...
,BiLSTM 对应的输出是 1.5 (B-Person), 0.9 (I-Person), 0.1 (B-Organization), 0.08 (I-Organization) and 0.05 (O). 接着输入 CRF layer, .CRF layer 将选出最大分值的 labels 序列作为输出结果。 表面上,经过 BILSTM, 我们已经获得了各个词在不同 label 上的得分。比如 对应“B-Person”, 得分 ...
模型的第三层是 CRF 层,进行句子级的序列标注。CRF 层的参数是一个 **$\mathbf{}$$\mathbf{(k+2) \times (k+2)}$**的矩阵 A ,$A_{ij}$表示的是从第 $i$个标签到第 $j$个标签的转移得分,进而在为一个位置进行标注的时候可以利用此前已经标注过的标签,之所以要加 2 是因为要为句子首部添加一...
1fromdata_processimportread_file, tag_to_ix2fromconfigimport*3fromBiLSTM_CRFimport*4importtorch5fromtorchimportnn6fromtorchimportoptim78_, content, label =read_file(filename)910deftrain_data(content, label):11train_data =[]12foriinrange(len(label)):13train_data.append((content[i], label[...
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践 1.GRU简介 GRU(Gate Recurrent Unit)门控循环单元,是[循环神经网络](RNN)的变种种,与 LSTM 类似通过门控单元解决 RNN 中不能长期记忆和反向传播中的梯度等问题。与 LSTM 相比,GRU 内部的网络架构较为简单。
CRF 是一种常用的序列标注算法,可用于词性标注,分词,命名实体识别等任务。BiLSTM+CRF 是目前比较流行的序列标注算法,其将 BiLSTM 和 CRF 结合在一起,使模型即可以像 CRF 一样考虑序列前后之间的关联性,又可以拥有 LSTM 的特征抽取及拟合能力。1.前言 在之前的文章CRF 条件随机场学习笔记中,介绍了条件随机...
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践 1.GRU简介 GRU(Gate Recurrent Unit)门控循环单元,是[循环神经网络](RNN)的变种种,与 LSTM 类似通过门控单元解决 RNN 中不能长期记忆和反向传播中的梯度等问题。与 LSTM 相比,GRU 内部的网络架构较为简单。
在序列标注任务(中文分词CWS,词性标注POS,命名实体识别NER等)中,目前主流的深度学习框架是BiLSTM+CRF。其中BiLSTM融合两组学习方向相反(一个按句子顺序,一个按句子逆序)的LSTM层,能够在理论上实现当前词即包含历史信息、又包含未来信息,更有利于对当前词进行标注。BiLSTM在时间上的展开图如下所示。
在序列标注任务(中文分词CWS,词性标注POS,命名实体识别NER等)中,目前主流的深度学习框架是BiLSTM+CRF。其中BiLSTM融合两组学习方向相反(一个按句子顺序,一个按句子逆序)的LSTM层,能够在理论上实现当前词即包含历史信息、又包含未来信息,更有利于对当前词进行标注。BiLSTM在时间上的展开图如下所示。
在深度学习出现之前,最好的序列标注训练工具肯定是“CRF:条件随机场”。最前沿对于序列预测的,当然是LSTM。 结合如上,我们基于pytorch 0.3选择双向LSTM + CRF来做单字的中文命句实体识别。 为了演示效果,简化其他环节。考虑最简单的训练集。 training_data = [( ...