BiFPN(Bidirectional Feature Pyramid Network),双向特征金字塔网络是一种高效的多尺度特征融合网络,它在传统特征金字塔网络(FPN)的基础上进行了优化。主要特点包括: 1. 高效的双向跨尺度连接:BiFPN通过在自顶向下和自底向上路径之间建立双向连接,允许不同尺度特征间的信息更有效地流动和融合。 2. 简化的网络结构:BiFPN...
首先,我们提出了一种加权双向特征金字塔网络(BiFPN),它允许轻松快速地进行多尺度特征融合;其次,我们提出了一种复合缩放方法,该方法统一缩放了所有主干网络、特征网络以及框/类别预测网络的分辨率、深度和宽度。基于这些优化和更好的主干网络,我们开发了一种新的目标检测器系列,称为EfficientDet,它在广泛的资源约束条件下...
下图展示的是EfficientDet架构的具体细节,其中包含了EfficientNet作为骨干网络(backbone),以及BiFPN作为特征网络的使用。在这个架构中,BiFPN层通过其双向特征融合的能力,从EfficientNet骨干网络接收多尺度的输入特征,然后生成用于对象分类和边框预测的富有表现力的特征。 在BiFPN层中,我们可以看到不同尺度的特征(P2至P7)如何通...
下图展示的是EfficientDet架构的具体细节,其中包含了EfficientNet作为骨干网络(backbone),以及BiFPN作为特征网络的使用。在这个架构中,BiFPN层通过其双向特征融合的能力,从EfficientNet骨干网络接收多尺度的输入特征,然后生成用于对象分类和边框预测的富有表现力的特征。 在BiFPN层中,我们可以看到不同尺度的特征(P2至P7)如何通...