Bi-encoder和Cross-encoder是在自然语言理解任务模型的两种不同方法,在信息检索和相似性搜索二者的使用更为广泛。在LLM大火的今天,RAG的pipe line中这两个模块作为提升检索精度的模块更是备受瞩目。 使用哪个: Bi-encoder:当您拥有大规模数据集和计算资源时,使用Bi-encoder。由于相似性得分可以独立计算,它们在推理期间...
defforward(self, query: Dict[str, Tensor] = None, passage: Dict[str, Tensor] = None, teacher_score: Tensor =None): q_reps= self.encode(query)#两个encoder分别求embedding,这是模型叫Bi双塔的原因p_reps =self.encode(passage)ifself.training:ifself.negatives_cross_deviceandself.use_inbatch_neg...
虽然Cross-Encoder在准确性方面通常优于Bi-Encoder,但Bi-Encoder在处理句子嵌入方面具有明显优势,且在某些情况下,如需要高效处理大量文档时,Bi-Encoder可能是更优的选择。因此,在实际应用中,应根据具体需求和可用资源来决定使用哪种编码器类型。 如何结合Bi-Encoder和Cross-Encoder以获得最佳的句子相似度计算结果?
Bi-Encoder 和 Cross-Encoder 原理示意图 Bi-Encoder 和 Cross-Encoder 原理示意图 Retrieve & Re-Rank Pipeline 结合Bi-Encoder 和 Cross-Encoder pipeline 示意图 参考: Sentence-Transformers 文档 使用样例:
Cross-Encoder:同时将两个句子传递给 Transformer 网络。它产生一个介于 0 和 1 之间的输出值,表示输入句对的相似性。不产生句子的 embedding。并且,无法将单个句子传递给Cross-Encoder。 论文解释:Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks Cross-Encoder比双编码器实现更好的性能。然而,对于许...
knowledge-distillationretrieval-chatbotbi-encoderdense-retrieval UpdatedJun 20, 2022 Python A set of dense retrieval models. bi-encoderdense-retrieval UpdatedSep 28, 2022 Python Exploring fast & accurate zero-shot text classification natural-language-processingtext-classificationtransformerzero-shot-learningtra...
In contrast, the efficient but not effective model, Bi-Encoder(BE), encodes texts and images separately, achieving an O(N) encoding complexity. Thus, to fulfill the potential of CE, we propose an Asymmetric Bi-Encoder(ABE) approach, which is a combination of CE and BE. For image-to-...
Bi-encoder vs Cross encoder? When to use which one? | 一只特立独行的猪 #45 Open Wanger-SJTU opened this issue Jun 2, 2024· 0 comments Comments Owner Wanger-SJTU commented Jun 2, 2024 https://wanger-sjtu.github.io/encoder-cross-bi/ Wanger-SJTU added Gitalk 00b3bb178817a706ffc...
论文阅读:Bi-encoder Transformer Network for Mandarin-English Code-switching Speech Recognition using Mix,程序员大本营,技术文章内容聚合第一站。
首先,我们简单的介绍下概念:所谓Bi-Encoder,先分别计算两个句子的特征,然后计算特征的相似度 (比如cosine similarity);而Cross-Encoder,是将两句话一起输入模型,可以直接输出两个句子的语义一致性得分。一般来说Cross-Encoder效果会优于Bi-Encoder,但是Cross-Encoder的计算量要大得多(参考【3】)。 图片来自https://...