然后sell往后移, 若prices[sell] < prices[buy],则将buy指向sell当前位置(buy = sell),否则计算当前股票买卖收益,并和之前计算的收益比较,取最大的值。 1//双指针法求股票买卖最佳时机问题23intmaxProfit_doublePtr(vector<int>&prices)4{5intbuy=0,sell=0;6intmaxProfit =0;7for(;sell<prices.size();++...
Say you have an array for which theithelement is the price of a given stock on dayi. Design an algorithm to find the maximum profit. You may complete at mosttwotransactions. 依旧还是那个熟悉的味道,如果II是I的另一个版本,那么III就是他们的一个升级版。 在这个版本中只能交易两次,也就是买卖各...
【leetcode】43-best-time-to-buy-and-sell-stock-iv 力扣 188. 买卖股票的最佳时机 IV 【leetcode】44-best-time-to-buy-and-sell-stock-with-cooldown 力扣 309. 买卖股票的最佳时机包含冷冻期 【leetcode】45-best-time-to-buy-and-sell-stock-with-cooldown 力扣 714. 买卖股票的最佳时机包含手续费 ...
【leetcode】43-best-time-to-buy-and-sell-stock-iv 力扣 188. 买卖股票的最佳时机 IV 【leetcode】44-best-time-to-buy-and-sell-stock-with-cooldown 力扣 309. 买卖股票的最佳时机包含冷冻期 【leetcode】45-best-time-to-buy-and-sell-stock-with-cooldown 力扣 714. 买卖股票的最佳时机包含手续费 ...
https://leetcode.com/problems/best-time-to-buy-and-sell-stock/leetcode.com/problems/best-time-to-buy-and-sell-stock/ 解题思路 1. 暴力 O(n2) 复杂度,超时 class Solution { public: int maxProfit(vector<int>& prices) { int maxVal = 0; int n = prices.size(); for(int i = 0; ...
给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。 你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。
2.代码参照leetcode官方解答,只是觉得它讲的没有自己理解的透彻. 代码 class solution { public int maxprofit ( int [ ] prices ) { int i = 0 ; if ( prices . length == 0 ) return 0 ; int valley = prices [ 0 ] ; int peak = prices [ 0 ] ; int maxprofit = 0 ; //这里面...
public class BestTimetoBuyandSellStock { [TestMethod] public void MaxProfit() { int[] price = new[] { 2,3,2,5 }; var temp = Algorithm.Model.BestTimetoBuyandSellStock.MaxProfit(price); Assert.AreEqual(temp, 3); price = new[] ...
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again). 这道是买股票的最佳时间系列问题中最难最复杂的一道,前面两道Best Time to Buy and Sell Stock 买卖股票的最佳时间和Best Time to Buy and Sell Stock II 买股票的最佳时间之二的思路...
th element is the price of a given stock on day i . Design an algorithm to find the maximum profit. You may complete at most two transactions. Note: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again). ...