bert-base-uncased链接:https://hf-mirror.com/google-bert/bert-base-uncased/tree/main 因为我常用的是pytorch版本,所以需要下载的东西为: 这些文件都放到一个文件夹里,然后用transformers库调用即可。 from transformers import BertModel,BertTokenizer BERT_PATH = '/my-bert-base-uncased' tokenizer = BertToken...
|--->bert-base-uncased 下载好的bert-base-uncased预训练模型的文件,放在名为bert-base-uncased文件夹下 |--->run.py 加载执行预训练模型的文件 run.py代码如下: fromtransformersimportBertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained("./bert-base-uncased") model = BertModel.from_pretra...
Bert下载和使用(以bert-base-uncased为例) Bert官方github地址:https://github.com/google-research/bert?tab=readme-ov-file 在github下载: 在huggingface(地址)下载config.json和pytorch_model.bin 将github下载的解压,并将huggingface下载的config.json和pytorch_model.bin放到解压后的文件夹: 测试: fromtransformers...
BERT-base-uncased是一个包含110M参数的预训练模型,其“base”表示基础版,“uncased”则意味着模型在训练和预测过程中会将所有文本转换为小写,不区分大小写。这一特性使得模型在处理英文文本时能够更加灵活地捕捉语义信息。 二、下载BERT-base-uncased模型 由于BERT模型的官方托管平台(如Hugging Face的Model Hub)可能需...