这篇文章提出了一个叫做GraphFormers的模型,把GNN和语言模型的transformer块堆在一起,让文本表征和图聚合可以交互训练。这种设计真是让人眼前一亮,感觉就像是给NLP研究注入了新的活力。 BertGCN:异质图的转导式文本分类 📊 接下来是2021年ACL上的一篇论文——《BertGCN: Transductive Text Classification by Combinin...
BERT的可解释 因为Transformer也是一种 GNN,所以各种基于Transformer的多层结构,包括BERT也可以用套用这一框架来理解。 假设以各层中的token为节点,token之间的网络是一个完全图,self-attention的权重A为[\text{seq_len}, \text{seq_len}]的数组,其中softmax作用在最后一维,则注意力权重表示的是token之间的一跳关系...
GNN里面存在过平滑的问题,那么Transformer结构和BERT结构的区别是什么? Transformer看做是全连接,但是边的权重不是非0即1,且每一层都在变化 LayerNorm 研究指标 为了研究BERT是否存在这个现象,作者计算一个指标:任意两个token的相似度 然后发现,随着层数的增加,相似度越来越高,存在一定的坍缩现象 既然GNN的过平滑是因...
百帝兰雪创建的收藏夹AI内容:【Attention 注意力机制】激情告白transformer、Bert、GNN的精髓,如果您对当前收藏夹内容感兴趣点击“收藏”可转入个人收藏夹方便浏览
This paper introduces a BERT-GNN approach for metastatic breast cancer prediction (BG-MBC) that integrates graph information derived from the BERT model. In this model, nodes are constructed from patient medical records, while BERT embeddings are employed to vectorise representations of the words in...
这也太完整了!我竟然花半天就学会了CNN、RNN、GAN、LSTM、GNN、OCR、BERT等十大算法,建议初学者必学的深度学习Pytorch框架!共计128条视频,包括:1. PyTorch实战课程简介、2. PyTorch框架发展趋势简介、3. 框架安装方法(CPU与GPU版本)等,UP主更多精彩视频,请关注UP账
除了这篇“新颖的论文”,还有其他网友推荐的不同方向论文,如基于BERT提出的 ALBERT,通过减少参数来减少内存的消耗;关于 GNN 和 GCN 的论文《GraphSAINT: Graph Sampling Based Inductive Learning Method》、《Demystifying Graph Neural Network Via Graph Filter Assessment》;NAS 也是近两年的热点,研究者们推荐了多篇...
nlpgnn Package description The field of natural language processing is currently undergoing tremendous changes, and many excellent models have been proposed in recent years, including BERT, GPT, etc. At the same time, graph neural network as an exquisite design is constantly being used in the fiel...
ZeroRin/BertGCNofficial 267 Tasks Edit AddRemove Classificationtext-classificationText Classification Datasets Edit Add Datasetsintroduced or used in this paper Results from the Paper AddRemove Submitresults from this paperto get state-of-the-art GitHub badges and help the community compare results to ...
nlpgnn Package description The field of natural language processing is currently undergoing tremendous changes, and many excellent models have been proposed in recent years, including BERT, GPT, etc. At the same time, graph neural network as an exquisite design is constantly being used in the fiel...