利用自然语言处理技术,提出一种基于Bert-BiLSTM-CRF模型的电子病历隐私信息识别方法。采用某三甲中医院的电子病历作为数据来源,结合当前公开的数据集进行训练,得到正确率为94.02%、召回率为94.25%、F1为93.98%的中医电子病历隐私信息识别...
① 将语言预训练模型 BERT 应用到中文实体识别中 语言预训练是作为中文实体识别的上游任务, 它把预训练出来的结果作为下游任务 BiLSTM-CRF 的输入, 这就意味着下游主要任务是对预训练出来的词向量进行分类即可, 它不仅减少了下游任务的工作量, 而且能够得到更好的效果; ② BERT 语言预训练模型不同于传统的预训练...
结果与结论: 试验结果表明,融合注意力机制与BERT+BiLSTM+CRF模型的渔业标准定量指标识别准确率为94.51%、召回率为96.37%、F1值为95.43%,研究表明,该方法解决了渔业标准定量指标识别准确率不高的问题,可以比较准确地识别由指标名、指标值...
BERT-BiLSTM-CRF模型是一种用于自然语言处理任务的序列标注模型。它结合了BERT(Bidirectional Encoder Representations from Transformers),BiLSTM(双向长短期记忆网络)和CRF(条件随机场)三个组件。 BERT是一种基于Transformer的预训练语言模型,能够提取文本的上下文表示。它通过在大规模语料库上进行无监督预训练,学习到了丰...
1、本发明的目的在于提供一种基于bert-bilstm-crf模型的配网故障设备实体识别方法,包括配网数据由收集到处理再到收集实验结果的全过程,充分利用了bert-bilstm-crf模型在上下文理解和文本序列标注上的优势,配合对配网数据的充分理解,提出了一种更有效、更高质量的配网故障设备实体识别方法。
【中文命名实体识别项目】医学糖尿病数据+Bert-BiLSTM-CRF-NER模型实现!简单易懂! 2004 20 4:59:12 App 基于BERT模型的自然语言处理实战—文本分类、情感分析、中文命名实体识别三大项目实战从零解读!看完就能跑通! 1.1万 4 1:01:35 App 【NLP经典论文】【基于神经网络的序列标注:BiLSTM+CNNs+CRF】 1217 ...
对于命名体识别的代码这一块,我大概的经验就是,工作中很少直接就上复杂模型,一般都是先来简单模型,然后在优化迭代。我给个大概的方向(大家视情况而定): 词典匹配-->HMM/CRF-->BiLSTM-CRF-->Bert系列 一般来说词典匹配是最简单的,也是最快的。不过很依赖于你的词典情况。一般来说,词典的补充需要你自己搞定,...
提升NER模型效果技巧 1.统一训练监控指标和评估指标(评估一个模型的最佳指标是在实体级别计算它的F1值,而不是token级别计算它的的准确率)。自定义一个f1值的训练监控指标传给回调函数 2.学习率衰减策略 3.分层设置学习率,非bert层要大 4.使用对抗训练提升模型鲁棒性...
首先需要租一个服务器(如果模型不是很复杂的话,本地就可以),可以看下面这个链接内容里的前三点,是说明如何租服务器的,当然其它阿里云、腾讯云等平台也可以。 https://blog.csdn.net/AAGHJJSJBJSHJ/article/details/122652323?spm=1001.2014.3001.5501 1.2 运行环境 ...
BERT-BiLSTM-CRF模型是一种用于自然语言处理任务的序列标注模型。它结合了BERT(Bidirectional Encoder Representations from Transformers),BiLSTM(双向长短期记忆网络)和CRF(条件随机场)三个组件。 BERT是一种基于Transformer的预训练语言模型,能够提取文本的上下文表示。它通过在大规模语料库上进行无监督预训练,学习到了丰...