思路:将bert做为嵌入层提取特征,然后传入BiLSTM,最后使用全连接层输出分类。创建bert_lstm模型,代码如下: classbert_lstm(nn.Module): def__init__(self,bertpath,hidden_dim,output_size,n_layers,bidirectional=True,drop_prob=0.5): super(bert_lstm,self).__init__() self.output_size=output_size self....
在自然语言处理任务中,BERT通常作为特征提取器,将输入的文本转换为固定长度的向量表示。接下来是BiLSTM。BiLSTM是一种循环神经网络,可以处理序列数据。它将输入序列分为多个时间步,每个时间步上的输出与下一个时间步的输入相关联。通过这种方式,BiLSTM可以捕捉序列中的长期依赖关系。在Bert-BiLSTM-CRF模型中,BiLSTM用...
于是作者在大规模无标注数据集上训练了双向LM,由BiLSTM的forward和bachward层拼接得到文本表征,用LM模型来帮助抽取更全面/通用的文本信息。在NER模型中第一层BiLSTM从NER标注数据中学习上下文信息,第二层BiLSTM的输入由第一层输出和LM模型的输出拼接得到,这样就可以结合小样本训练的文本表征和更加通用LM的文本表征。
2. 模型搭建 接下来,我们需要搭建 Bert-BiLSTM-CRF 模型。这部分代码相对复杂,涉及到多个组件: importtorchfromtorchimportnnfromtransformersimportBertModelclassBertBiLSTMCRF(nn.Module):def__init__(self,bert_model='bert-base-uncased',hidden_dim=256,num_classes=10):super(BertBiLSTMCRF,self).__init__...
一. 命名实体识别 命名实体识别(Named Entity Recognition,NER)是NLP领域中一项基础的信息抽取任务,...
本文将采用BERT+BiLSTM+CRF模型进行命名实体识别(Named Entity Recognition 简称NER),即实体识别。命名实体识别,是指识别文本中具有特定意义的实体,主要包括人名、地名、机构名、专有名词等。 BERT(Bidirectional Encoder Representation from Transformers),即双向Transformer的Encoder。模型的创新点在预训练方法上,即用了Mas...
BERT-BiLSTM-CRF模型是一种用于自然语言处理任务的序列标注模型。它结合了BERT(Bidirectional Encoder Representations from Transformers),BiLSTM(双向长短期记忆网络)和CRF(条件随机场)三个组件。 BERT是一种基于Transformer的预训练语言模型,能够提取文本的上下文表示。它通过在大规模语料库上进行无监督预训练,学习到了丰...
《瑞金医院MMC人工智能辅助构建知识图谱大赛》命名实体识别(Named Entity Recognition, NER)任务。本项目模型结构:Bert+BiLSTM+CRF,更多内容:http://edu.ichenhua.cn/t/ner, 视频播放量 7.1万播放、弹幕量 22、点赞数 1336、投硬币枚数 746、收藏人数 2825、转发人数 3
Github(最终使用):https://github.com/HandsomeCao/Bert-BiLSTM-CRF-pytorch 1.原始数据 代码中应用到的数据为医药命名体识别数据,已经处理成了BIO格式,其中B、I包含6个种类,分别为DSE(疾病和诊断),DRG(药品),OPS(手术),LAB( 检验),PAT(解剖部位)、INF(检查)。
基于bert命名行训练命名实体识别模型: 安装完bert-base后,会生成两个基于命名行的工具,其中bert-base-ner-train支持命名实体识别模型的训练,你只需要指定训练数据的目录,BERT相关参数的目录即可。可以使用下面的命令查看帮助 bert-base-ner-train -help 训练命名实体识别的例子如下: ...