wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json -O ./dev-v1.1.json --no-check-certificate 数据预处理,将原始数据集转换为模型输入的数据。 运行bert_preprocess_data.py脚本,执行数据预处理。 python3 bert_preprocess_data.py --max_seq_length=512 --do_lower_case --vocab_...
在github下载: 在huggingface(地址)下载config.json和pytorch_model.bin 将github下载的解压,并将huggingface下载的config.json和pytorch_model.bin放到解压后的文件夹: 测试: fromtransformersimportBertModel,BertTokenizer BERT_PATH ='上面解压好的文件夹的路径'tokenizer = BertTokenizer.from_pretrained(BERT_PATH)print...
GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment Assignees No one assigned Labels None yet Projects None yet Milestone No milestone Development No branches or pull requests 3 participants ...
解决BERT模型(如bert-base-uncased)的tokenizer加载问题的步骤总结如下: 1. 获取资源包:首先,从GitHub上下载预训练的BERT模型(tokenizer),通常BERT的tokenizer是作为独立的资源发布的,比如Hugging Face的 transformers 库。 2. 解压缩文件:下载的文件可能是压缩格式(如.zip或.tgz),使用适当的方法(如WinRAR、7-Zip或...
Modifyhttps://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/data/create_datasets_from_start.shto run python bertPrep.py with --max_seq_length 512 --max_predictions_per_seq 80 --vocab_file /path_to_vocab_dir/uncased_L-12_H-768_A-12/vocab.txt --do_lower...
[3]https://rajpurkar.github.io/SQuAD-explorer/ [4]https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/data/create_datasets_from_start.sh [5]NVIDIA NeMo Toolkit Licence License to use this model is covered by the NGCTERMS OF USEunless another License/Terms ...
Top GitHub Comments 6reactions WinMinTuncommented, Jul 30, 2021 Still not okay online, but I managed to do it locally git clonehttps://huggingface.co/bert-base-uncased #model = AutoModelWithHeads.from_pretrained(“bert-base-uncased”) model = AutoModelWithHeads.from_pretrained(BERT_LOCAL_PATH...
[3] https://rajpurkar.github.io/SQuAD-explorer/ [4] https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/data/create_datasets_from_start.sh [5] NVIDIA NeMo Toolkit Licence License to use this model is covered by the NGC TERMS OF USE unless another License...
如果以上步骤都无法解决问题,你可以考虑在Stack Overflow、GitHub Issues或Hugging Face Forums等社区中搜索或提问。在提问时,请提供详细的错误信息、代码片段以及你已经尝试过的解决方法。 希望这些解答能帮助你解决“can't load tokenizer for 'bert-base-uncased'”的问题。如果还有其他疑问或需要进一步的帮助,请随时...