文本生成:GPT可以用来生成文本。 文本自动完成:GPT可以用来自动完成用户输入的文本。 语言翻译:GPT可以用来生成翻译后的文本。 对话生成: GPT可以用来生成对话 摘要生成: GPT可以用来生成文章摘要 Bert与GPT预训练任务区别 在Bert与GPT的预训练任务的选取上,Bert与GPT所用的模型也存在着较大的差异。 Bert——Masking ...
语言模型:Bert和GPT-2虽然都采用transformer,但是Bert使用的是transformer的encoder,即:Self Attention,是双向的语言模型;而GPT-2用的是transformer中去掉中间Encoder-Decoder Attention层的decoder,即:Masked Self Attention,是单向语言模型。 结构:Bert是pre-training + fine-tuning的结构;而GPT-2只有pre-training。 输入...
GPT-2继续沿用了原来在GPT种使用的单向Transformer模型,而这篇文章的目的就是尽可能利用单向Transformer的优势,做一些BERT使用的双向Transformer所做不到的事。那就是通过上文生成下文文本。 GPT-2的想法就是完全舍弃Fine-Tuning过程,转而使用一个容量更大、无监督训练、更加通用的语言模型来完成各种各样的任务。我们完...
首先在训练速度上。FlashAttention比MLPerf 1.1的BERT速度记录高出15%。在实现GPT-2上,比HuggingFace速度高出3倍,比Megatron的标准Transformer速度高出1.8倍,FlashAttention将LRA(long-range arena)的基准速度提高了2.4倍。在模型质量,FlashAttention将Transformer扩展到更长的序列,并且质量更好。长上下文的语言建...
GPT-1 使用 Transformer 的解码器进行特征提取。解码器使用 Masked Self-attention,由于掩码作用,GPT是一个单向模型,它只能依赖已生成的上文来预测下一个词。 🔨 Hyper-parameter# GPT1(Totalparameters:About100M)---Tokenizer:Bytepairencoding(BPE)Positional encoder:LearnedpositionembeddingsTransformer block:Decoder...
其实GPT的作者是想通过这种方式说明:你看,通过这种改造,GPT 2.0的Transformer学到了多少知识呀,通用性多强啊,做下游任务的时候,包括语言模型、QA、摘要、机器翻译这么多任务,即使不用有监督的方式,直接拿第一阶段用语言模型训练好的模型,都能比较好地做这些任务(从无监督的角度比,效果确实挺好,但是跟目前有监督的...
单向通用模型——GPT-2 GPT-2继续沿用了原来在GPT种使用的单向Transformer模型,而这篇文章的目的就是尽可能利用单向Transformer的优势,做一些BERT使用的双向Transformer所做不到的事。那就是通过上文生成下文文本。GPT-2的想法就是完全舍弃Fine-Tuning过程,转而使用一个容量更大、无监督训练、更加通用的语言模型来完成...
GPT(Generative Pre-Training),是OpenAI在2018年提出的模型,利用Transformer模型来解决各种自然语言问题,例如分类、推理、问答、相似度等应用的模型。GPT采用了Pre-training + Fine-tuning的训练模式,使得大量无标记的数据得以利用,大大提高了这些问题...
0:从你最喜欢的 reddit 文章中获取一些 reddit 评论数据,并将其格式化为类似「comment[SEP]reply」的字符串 步骤 1:微调 GPT-2 以生成格式为「comment[SEP]reply」的 reddit 文本 步骤 2:微调两个 BERT 分类器: a: 区分真实回复和 GPT-2 生成的回复 b: 预测评论将获得多少次支持 步骤...
GPT 2.0到底做了什么 之前在介绍Bert的文章里:从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史,我说GPT有个缺点,就是作者不太会炒作,因为它是个非常扎实的重大NLP进展,出生证日期显示年龄比Bert大,但是Bert哇哇坠地就引来各界慈爱的目光和交口称赞,GPT只能躲在无人角落里暗地泪垂,演绎了算法模型界的...