2.5 fine-tuning 这里fine-tuning之前对模型的修改非常简单,例如针对sequence-level classification problem(例如情感分析),取第一个token的输出表示,喂给一个softmax层得到分类结果输出;对于token-level classification(例如NER),取所有token的最后层transformer输出,喂给softmax层做分类。 总之不同类型的任务需要对模型做...
c 做的是阅读理解问题,d 做的是命名实体识别(NER),模型构造也类似,取图中箭头指出的部分词对应的隐层输出分别接一个分类输出层完成任务。 类似以上这些任务的设计,可以将预训练模型 fine-tuning 到各类任务上,但也不是总是适用的,有些 NLP 任务并不适合被 Transformer encoder 架构表示,而是需要适合特定任务的模...
缩小pretrain和fine-tuning的差距: 最近在入门NLP,主要是NER,记录下读过的文章和代码。希望能帮助到和我一样的刚入门NLP的同学。 我觉得Bert真的很值得一读,因为我学习CV要比学习NLP的时间长的多,所以看CV的文章会多一些。最近很好的文章MAE基本就是CV版本的Bert,而且最主要的是,随着self-attention在CV也开始用...
BERT 的微调 微调(fine tuning)是在 BERT 预训练模型的基础上加入针对性的网络结构(微调层),并利用(相对)少量数据来训练微调层使之能够满足一定的任务需要的学习过程。在微调训练中,训练数据首先通过 BERT 预训练模型计算,这时 BERT 预训练模型起到了特征提取器的作用,它的参数不会被训练(更新)。这些被...
BERT取名来自 Bidirectional Encoder Representations from Transformers。架构为:预训练 + fine-tuning(对于特定的任务只需要添加一个输出层)。 1、引言 通过预训练语言模型可显著提高NLP下游任务。限制模型潜力的主要原因在于现有模型使用的都是单向的语言模型,无法充分了解到单词所在的上下文结构。
BERT模型在NER任务中表现出色,主要得益于其强大的语言理解能力。BERT通过双向Transformer结构,能够理解上下文信息,捕捉词与词之间的关系,从而更准确地识别出命名实体。此外,BERT模型还可以通过微调(fine-tuning)来适应特定领域的NER任务,进一步提高识别精度。在BERT模型中,常见的NER标注方法包括BIO、BILOU等。这些标注方法将...
这是一个比较通用的利用 Bert 优化 QA 问题的解决思路,不同方案大同小异,可能不同点仅仅在于 Fine-tuning 使用的数据集合不同。 QA 和阅读理解,在应用 Bert 的时候,在某种程度上是基本类似的任务,如果你简化理解的话,其实可以把上述 QA 流程的第一阶段扔掉,只保留第二阶段,就是阅读理解任务应用 Bert 的过程...
"We show that pre-trained representations eliminate the needs of many heavily engineered task-specific architectures". 在11项BERT刷出新境界的任务中,大多只在预训练表征(pre-trained representation)微调(fine-tuning)的基础上加一个线性层作为输出(linear output layer)。在序列标注的任务里(e.g. NER),甚至...
最近刷到一篇论文,题目是Revisiting Few-sample BERT Fine-tuning 。论文刚挂到arxiv上,虽然关注的人还不是很多,但是读完之后发现内容很实用,很适合应用到实际的业务中。本文主要就这篇论文中的一些观点进行解读和实验验证。 话不多说,直接进入正题。这篇论...
这是一个比较通用的利用 Bert 优化 QA 问题的解决思路,不同方案大同小异,可能不同点仅仅在于 Fine-tuning 使用的数据集合不同。 QA 和阅读理解,在应用 Bert 的时候,在某种程度上是基本类似的任务,如果你简化理解的话,其实可以把上述 QA 流程的第一阶段扔掉,只保留第二阶段,就是阅读理解任务应用 Bert 的过程...