BERT与GPT非常的相似,都是基于Transformer的二阶段训练模型,都分为Pre-Training与Fine-Tuning两个阶段,都在Pre-Training阶段无监督地训练出一个可通用的Transformer模型,然后在Fine-Tuning阶段对这个模型中的参数进行微调,使之能够适应不同的下游任务。 虽然BERT与GPT看上去非常的相似,但是它们的训练目标和模型结构和使用...
Transformer是GPT和BERT的前身。谷歌和OpenAI在自然语言处理技术上的优化,都是基于这个模型。 更多关于的Transformer可以看文章:ChatGPT与Transformer(无公式版) 而在目前的“猜概率”游戏环境下,基于大型语言模型(LLM,Large Language Model)演进出了最主流的两个方向,即Bert和GPT。 其中BERT是之前最流行的方向,几乎统治...
GPT 使用了 Transformer 架构的一种变体,即它使用了基于多层 Transformer 解码器的语言模型。其原论文提供了一种预训练的架构,其模块仅有 12 层的 Transformer 解码器。每个模块都有 768 的隐藏大小和 12 个自注意头。权重是在 BooksCorpus 上训练的。这使其可生成 p(wi |history),一次一个词。BERT 是一种...
BERT和GPT都基于Transformer架构,但结构有所不同。GPT是一个纯生成模型,通过自回归方式从左到右生成文本。而BERT是一个双向模型,使用双向Transformer架构处理文本。📚 预训练任务: GPT使用语言建模任务,即在无监督语料库中预测下一个词。BERT则采用两个任务进行预训练:掩码语言建模和下一句预测,旨在预测被掩盖的词和...
GPT-1提出不久就被Google提出的BERT采用更大的模型更大的数据集给超过了,前面提到GPT采用的是Transformer的解码器结构,而BERT采用的是编码器结构,那在GPT的基础上,肯定不能选择换回编码器结构,不然就承认被超越了,前面也提到GPT是预测下一个词,其保证条件概率最大化,这个相比于BERT能看到前后信息而言难度更大,但相...
图1:Transformer,GPT,BERT的主要任务场景。绿色字体为模型输出。 本文将从最语言模型的角度来讲解Transformer的网络结构,并且具体关注它在训练与推理任务上的一些差异,从中可以帮助读者更好地理解该网络的功能。之后我们将对比另外两个重要的衍生模型:GPT和BERT,并着重关注它们之间的差异。
BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer的预训练语言模型,旨在通过双向训练来捕捉文本中的上下文信息。与GPT等模型不同,BERT在训练时同时考虑了文本的左信息和右信息,从而能够更好地理解上下文含义。这一特点使得BERT在许多NLP任务中取得了显著的性能提升。BERT的基本结构与...
采用的是Transformer的编码器结构,每一个编码器输入和输出维度是一致的,BERT有两个版本,BERT_Base版本和GPT一样采用12层,维度是768,参数大小约110M,BERT_Large采用24层,维度选择1024。这里Base版本估计是为了和GPT比较,而后面Large应该是对应的数据集更大而设大的。
Transformer 是一种注意力机制,可以学习文本中单词之间的上下文关系的。 Transformer 的原型包括两个独立的机制,一个 encoder 负责接收文本作为输入,一个 decoder 负责预测任务的结果。 BERT 的目标是生成语言模型,所以只需要 encoder 机制。 Transformer 的 encoder 是一次性读取整个文本序列,而不是从左到右或从右到左...
前几天细读GPT的paper,里面使用的基础模型和BERT一样都是Transformer,区别就在于GPT用的是单向Transformer,而BERT使用的是双向Transformer。之前对Transformer认识也比较敷衍,这几天就专门看了相关的paper、文章和代码,重新认识一下Transformer。 首先,Transformer来自论文Attention Is All You Need,后面笔记很多参考文章The ...