首先定义一个配置文件类,类里边存放Bert和CNN的一些超参数 classConfig(object):'''配置参数'''def__init__(self,dataset):# 模型名称self.model_name='Bert CNN Model'# 训练集,测试集,检验集,类别,模型训练结果保存路径# self.train_path=dataset+'/data/dev.txt'# self.test_path=dataset+'/data/dev....
在文本分类任务中,我们通常使用BERT来提取输入文本的语义特征。CNN是一种深度学习模型,广泛应用于图像处理领域。但同样可以应用于文本处理任务中,例如文本分类。CNN通过卷积操作逐层提取文本的局部特征,并通过池化操作进行特征降维,从而得到更加抽象和有代表性的特征表示。二、BERT+CNN模型构建我们可以将BERT和CNN结合使用,...
pooler_output:通常后面直接接线性层用来文本分类,不添加其他的模型或层。 hidden_states:每层输出的模型隐藏状态加上可选的初始嵌入输出。12*(batch_size, sequence_length, hidden_size) 根据上面三个可知,如果我们要加上 TextCNN 模型,可以选择last_hidden_state和hidden_states,这两个不同的区别就是 last_hidde...
1.load_dataset中先构建一个token和其token_ids。 2.config.tokenizer.convert_tokens_to_ids(token)`是一个使用Hugging Face Transformers库进行文本处理时,将token转换成相应的id的函数。具体来说,它会从Tokenizer对象中获取当前模型所采用的词汇表(vocab),并将输入的token转换成对应的整数id。 例如: python复制代...
NLP实战 | BERT文本分类及其魔改(附代码) 每天给你送来NLP技术干货! 写在前面 本文主要介绍了两种文本分类模型:BERT文本分类基础模型,及基于Bert和TextCNN的魔改模型。在作者实际的有关文本分类的工作中取得了F1值超越Bert基础模型近4%的效果。 1. Baseline:Bert文本分类器...
一,准备数据 准备数据阶段主要需要用到的是datasets.Dataset 和transformers.AutoTokenizer。1,数据加载 H...
BERT 的网络架构使用的是《Attention is all you need》[2] 中提出的多层 Transformer Encoder 结构,其最大的特点是抛弃了传统的 RNN 和 CNN,通过 Attention 机制将任意位置的两个单词的距离转换成1,有效的解决了 NLP 中棘手的长期依赖问题。Transformer 的结构在 NLP 领域中已经得到了广泛应用,其网络架构如下图...
最基本的BERT实现文本分类任务,就是在最后一层加上一个全连接层即可 BERT模型配置参数:config.json BE...
RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中。 2 数据集 数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainDat...
learn = cnn_learner(data, models.resnet18, metrics=accuracy) learn.fit_one_cycle(1) interp = ClassificationInterpretation.from_learner(learn) interp.plot_top_losses(9, figsize=(8, 8)) 别小瞧这几行代码,不仅帮你训练好一个图像分类器,还能告诉你,那些分类误差最高的图像中,模型到底在关注哪里。