CNN是一种深度学习模型,广泛应用于图像处理领域。但同样可以应用于文本处理任务中,例如文本分类。CNN通过卷积操作逐层提取文本的局部特征,并通过池化操作进行特征降维,从而得到更加抽象和有代表性的特征表示。二、BERT+CNN模型构建我们可以将BERT和CNN结合使用,以充分发挥两者的优势。首先,我们使用BERT对输入文本进行编码,...
BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer的预训练语言模型,它能够理解和生成自然语言文本。BERT在各种NLP任务中表现出色,包括文本分类、命名实体识别和问答等。TextCNN(Convolutional Neural Network for Text)是一种卷积神经网络模型,专为文本数据设计。它通过卷积操作捕捉文本中的局...
首先定义一个配置文件类,类里边存放Bert和CNN的一些超参数 class Config(object): ''' 配置参数 ''' def __init__(self,dataset): # 模型名称 self.model_name='Bert CNN Model' # 训练集,测试集,检验集,类别,模型训练结果保存路径 # self.train_path=dataset+'/data/dev.txt' # self.test_path=data...
x): """ Forward pass of the TextCNN model. :param x: torch.Tensor, input tens...
TextCNN 是利用卷积神经网络对文本进行分类的算法,由 Yoon Kim 在“Convolutional Neural Networks for Sentence Classification” 一文 中提出. 是2014年的算法. 将Text的词向量拼接在一起,就好比一张图,只不过这个图只是一个channel的.这里使用的就是Conv1d. ...
在Bert问世前,TextCNN在文本分类模型中占据了举足轻重的位置。这源于CNN网络可以很有效的捕捉文本序列中的n-gram信息,而分类任务从本质上讲是捕捉n-gram排列组合特征。无论是关键词、内容,还是句子的上层语义,在句子中均是以n-gram特征的形式存在的。 TextCNN模型结构 2.2 魔改思路 作者在做完Bert和TextCNN的实验惊...
图一:bert分类模型结构 Bert文本分类模型常见做法为将bert最后一层输出的第一个token位置(CLS位置)当作句子的表示,后接全连接层进行分类。 图二:TextCNN分类模型结构 在Bert问世前,TextCNN在文本分类模型中占据了举足轻重的位置,源于Cnn网络可以很有效的捕捉文本序列中的n-gram信息,而分类任务从本质上讲是捕捉n-gram...
在文本分类任务上表现良好。 考虑到生产环境中积累了大量的基于 BERT 的标签数据以及平替模型的特点,我们选用的方案是:结合知识蒸馏中 Teacher-Student 方式和主动学习的思路,使用 BERT 对 TextCNN 的推理结果进行筛选,并根据 TextCNN 的输出 loss 和概率分布,通过数据增强的方式迭代 TextCNN 的训练,从而使 TextCNN...
寄语:Bert天生适合做分类任务。文本分类有fasttext、textcnn等多种方法,但在Bert面前,就是小巫见大巫了。
Bert-CNN Bert-RNN classModel(nn.Module):def__init__(self, config):super(Model, self).__init__() self.bert = BertModel.from_pretrained(config.bert_path)forparaminself.bert.parameters(): param.requires_grad =Trueself.convs = nn.ModuleList( ...