总的来说,BiLSTM-CRF在准确性上有优势,但计算成本较高;IDCNN-CRF在速度上有优势,但可能在效果上稍逊一筹;而Bert+BiLSTM-CRF结合了预训练模型的强大能力和序列模型的特定任务适应性,通常能够取得最佳性能,但需要较大的计算资源和模型维护成本。在实际应用中,选择哪种模型结构需要根据具体任务的需求、可用资源和性能...
其优点是便于修改更新,确定性强;其缺点也很明显:正则需要编写大量规则,词典则需要收集大量同义词。正则适用于结构比较清晰的实体,例如时间日期等。而词典则适用于专用词汇,例如一卡通等。 基于模型的方法,经典结构是BiLSTM + CRF。其优点是泛化能力强;缺点是需要大量的标注样本。在样本很少的情况下,效果会很挫。 为...
该模型整体基于 Lattice LSTM + CRF,如图所示,单词序列“长江大桥“、“长江“、“大桥“ 能消除潜在...
一、模型骨架:BERT. 给定问题,需要从输入文本中抽取出答案片段,使用BERT 作为骨架,输入 { [CLS] ,...
2) BiLSTM-CRF模型 端到端的模型,通常是双向的LSTM模型来捕获单词基于上下文的特征,经过lstm模型输出得到的是能够表示单词上下文信息的向量,然后经过线性层转换为score,就是该单词对应每个实体的打分;这个打分输入给CRF层,crf层实际学习的是一个[outsize,outsize]的转移矩阵,这个矩阵第i行第j列的元素的含义是:上一...
BERT-BiLSTM-CRF模型是一种用于自然语言处理任务的序列标注模型。它结合了BERT(Bidirectional Encoder Representations from Transformers),BiLSTM(双向长短期记忆网络)和CRF(条件随机场)三个组件。 BERT是一种基于Transformer的预训练语言模型,能够提取文本的上下文表示。它通过在大规模语料库上进行无监督预训练,学习到了丰...
与BiLSTM-CRF相比,BERT-BiLSTM-CRF引入了BERT预训练模型的优势,通过训练得到动态词向量,这些向量在表示能力上优于BiLSTM-CRF的静态嵌入方法。BERT-BiLSTM-CRF模型在获取BERT序列输出后,直接将其作为输入,与BiLSTM-CRF层结合,完成序列标注。三者的区别主要在于特征获取方式和模型结构。CRF依赖手动特征...
1.BERT+BiLSTM+CRF>BiLSTM+CRF 多了一层BERT初始化word embedding,比随机初始化肯定要好,这个就不多解释了。 2.BERT+BiLSTM+CRF>BERT+CRF 首先BERT使用的是transformer,而transformer是基于self-attention的,也就是在计算的过程当中是弱化了位置信息的(仅靠position embedding来告诉模型输入token的位置信息),而在序...
基线模型 Bert-Bilstm-CRF 来看下基准模型的实现,输入是wordPiece tokenizer得到的tokenid,进入Bert预训练模型抽取丰富的文本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进入CRF层进行解码...