class BiLSTM_CRF(nn.Module): def __init__(self, vocab_size, emb_size, hidden_size, out_size, dropout, use_pretrained_w2v): super(BiLSTM_CRF, self).__init__() self.bilstm = BiLSTM(vocab_size, emb_size, hidden_size, out_size, dropout, use_pretrained_w2v) self.transition = nn...
综合两组模型对,将CRF学习率扩大100倍能很明显的提升模型性能,并且BERT-CRF-0.001模型性能是最好的,甚至略微好于BERT-Bi-LSTM-CRF-0.001,这充分验证了CRF所需要的的学习率要比BERT大,设置更大的学习率能够为模型带来性能提升。 参考文献 [1] 简明条件随机场CRF介绍(附带纯Keras实现) [2] BiLSTM上的CRF,用命...
self.dropout = nn.Dropout(0.1) self.bilstm = nn.LSTM(bidirectional=True, input_size=hidden_size, hidden_size=hidden_size // 2, batch_first=True) self.fc = nn.Linear(hidden_size, num_tags) self.crf = CRF(num_tags) def forward(self, input_ids, attention_mask, labels=None): outputs...
基线模型 Bert-Bilstm-CRF 来看下基准模型的实现,输入是wordPiece tokenizer得到的tokenid,进入Bert预训练模型抽取丰富的文本特征得到batch_size * max_seq_len * emb_size的输出向量,输出向量过Bi-LSTM从中提取实体识别所需的特征,得到batch_size * max_seq_len * (2*hidden_size)的向量,最终进入CRF层进行解码...
框架很简单,就是bert+Bilstm-CRF,前面讲了bert就是用来产生词向量的,所以如果抛开这个原理,这个升级版本的NER模型就很简单了。 这里先给出代码链接。BERT是Google提出的基于tensorflow1.11.0的代码,里面用了高级API,所以这篇博客我主要在代码层面讲一下bert的应用。原理部分我也做了详细的介绍,请戳。
通过Bert+Bi-LSTM+CRF模型探索中文关键信息实体识别。 使用BERT预训练模型,获取每一个标识的向量表示特征 输入BiLSTM模型学习文本之间的关系 通过CRF层获取每个标识的分类结果 BERT+BiLSTM+CRF模型图 数据集 数据集用的是客服热线的内部话单数据,将客服人员接听的语音数据自动翻译为文本数据,然后从文本数据中提取具体的...
我们在训练集上检验了BERT、BERT+CRF、BERT+BiLSTM和BERT+BiLSTM+CRF各模型的准确率、召回率和micro_f1值后,我们发现BERT+BiLSTM+CRF模型具有更好的医疗实体识别能力,因此,在本项目中,我们选用**BERT+BiLSTM +CRF**模型完成后续医疗实体识别的任务。3.4. 知识图谱构建 为了进行准确的疾病诊断,我们依托于大...
Bert-BiLSTM-CRF模型是一个深度学习模型,由BERT、BiLSTM和CRF三个部分组成。BERT是一种预训练语言模型,能够理解和生成自然语言文本;BiLSTM是一种循环神经网络,能够处理序列数据;CRF是一种条件随机场,能够识别序列中的结构模式。下面我们将详细解析这个模型的结构和原理。首先,让我们来看一下BERT。BERT是一种预训练语...
BERT + BiLSTM + CRF 对BERT结构与下接结构分别采用不同的学习率进行微调,具体代码如下: 1. with session.as_default(): 2. model = Model(config) # 读取模型结构图 3. # 超参数设置 4. global_step = tf.Variable(0, name='step', trainable=False) 5. learning_rate = tf.train.exponential_deca...