内容提示: 地质通报 Geological Bulletin of China ISSN 1671-2552,CN 11-4648/P 《地质通报》网络首发论文 题目: 结合 BERT 与 BiGRU-Attention-CRF 模型的地质命名实体识别 作者: 谢雪景,谢忠,马凯,陈建国,邱芹军,李虎,潘声勇,陶留锋 网络首发日期: 2021-09-13 引用格式: 谢雪景,谢忠,马凯,陈建国,邱芹军...
摘要:针对目前网络评论文本情感分类准确性不高的问题,提出一种基于BERT和双向门控循环单元(BiGRU)的改进模型,使用能够表征文本丰富语义特征的BERT模型进行词向量表示,结合能够长期保留文本上下文关联信息的BiGRU神经网络提高模型的分类效果,并在此基础上引入注意力机制,突出文本中更能表达分类结果的情感词权重,提高情感分类...
bert bigru self-attention模型 bert bigru self-attention模型BERT(Bidirectional Encoder Representations from Transformers)是一个双向的自注意力(self-attention)模型,它采用 Transformer 结构进行预训练,广泛用于自然语言处理(NLP)任务。GRU(Gated Recurrent Unit)是一种循环神经网络(RNN)的变种,用于处理序列...
针对网络安全这一特殊背景[1],设计了一种BERT-BiGRU-Self-Attention-CRF模型进行命名实体识别。以预训练模型Bert作为底座,通过Bert提升模型的语义理解和句子表达能力;结合双向的门控循环单元BiGRU,通过前向和后向传播来融合句子中的上下文信息,更好地捕捉前后文之间的关联特征;将BiGRU层的输出输入注意力机制中[2],通过...
进一步的,所述步骤s3构建bert-bigru-idcnn-attention-crf神经网络模型,具体包括步骤: s3-1、将步骤s2预处理所得的命名实体识别的训练集输入到步骤s1训练好的bert预训练模型,bert模型输出词嵌入向量; s3-2、将bert预训练语言模型输出的词向量输入给bigru(bidirectionalgatedrecurrentunit)神经网络模型; ...
向量表,取向量,之后简单地用一个双向 GRU(BiGRU) 模型来获得深层的全局双向信息即可。 然后融合这些语义标签信息,具体做法是:将上一步骤中深层GRU双向信息都拼接起来,然后接一个全连接层来实现...需要将子词向量映射成一个词向量。具体做法是:在子词区域使用CNN,然后进行 max pooling来提取词向量。然后将BERT out...
这两种能力主要是得益于Transformer-encoder中的self-attention结构,在计算当前词的时候同时利用了它上下文的词使其能提取词之间长距离依赖关系;由于每个词的计算都是独立不互相依赖,所以可以同时并行计算所有词的特征。Transformer与Transformer-encoder结构如下:
本发明请求保护一种基于注意力机制的BERTBiGRUIDCNNCRF的命名实体识别方法,包括步骤:通过大规模无标注预料训练BERT预训练语言模型;在训练好的BERT模型的基础上,构造完整的BERTBiGRUIDCNNAttentionCRF命名实体识别模型;构建实体识别训练集,并在该训练集上对完整实体识别模型进行训练;将待进行实体识别的预料输入到训练好的实体...
transformer模型的工作原理和语言模型BERT 1,概述 《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的 CNN 和 RNN。目前大热的Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,.....