一、BERT整体架构 BERT由Transformer中的encoer组成,其中BERT模型有多个版本,主要有BERT-Base和BERT-Large。BERT-Base包含12层的Transformer编码器,每层有768个隐藏单元和12个自注意力头。BERT-Large则有24层Transformer编码器,每层有1024个隐藏单元和16个自注意力头,其中BERT-Large有更多的参数,通常能够获得更好的效果。
从论文的结果中可以看出:BERT Base 超过 OpenAI GPT,并且BERT Large超过BERT base。 接下来看一下BERT在各项任务上的成绩: GLUE 一般语言理解评估(GLUE)基准(Wang et al,2018)是各种自然语言理解任务的集合。有8个GLUE分类任务用于评估绩效。BERT Base不仅所有任务上超过了OpenAI GPT 达到了SOTA,而且平均将SOTA提高...
近期,亚马逊 Alexa 团队发布了一项研究成果:研究人员对BERT模型进行参数选择,获得了BERT的最优参数子集——Bort。 研究结果表明,Bort大小仅为BERT-large的16%,但是在CPU上的速度却快了7.9倍,在NLU基准测试上的性能也优于BERT-large。 这是在NLP模型快速“膨胀”,模型轻量化迫切需求的背景下,一次比较成功的...
近期,亚马逊 Alexa 团队发布了一项研究成果:研究人员对BERT模型进行参数选择,获得了BERT的最优参数子集——Bort。 研究结果表明,Bort大小仅为BERT-large的16%,但是在CPU上的速度却快了7.9倍,在NLU基准测试上的性能也优于BERT-large。 这是在NLP模型快速“膨胀”,模型轻量化迫切需求的背景下,一次比较成功的结果。
一、从RNN开始 NLP里最常用、最传统的深度学习模型就是循环神经网络 RNN(Recurrent Neural Network)。这个模型的命名已经说明了数据处理方法,是按顺序按步骤读取的。与人类理解文字的道理差不多,看书都是一个字一个字,一句话一句话去理解的。 RNN 有多种结构,如下所示
模型大小很重要,即使是大规模的。拥有3.45亿个参数的BERT_large是同类模型中最大的一个。它在小规模任务上明显优于BERT_base,后者使用相同的体系结构,“仅”使用1.1亿个参数。 有足够的训练数据,更多的训练步骤==更高的准确率。例如,在MNLI任务中,在1M步(128000字批量大小)上训练的BERT_base准确率比在相同批量...
提取 BERT 子架构是一个非常值得探讨的问题,但现有的研究在子架构准确率和选择方面存在不足。近日,来自亚马逊 Alexa 团队的研究者细化 BERT 子架构提取过程,并提取了一个最优子架构 Bort,它的大小仅为 BERT-large 的 16%,CPU 上的推理速度却提升到了原来的八倍。在自然语言处理领域,BERT 是一个里程碑式...
BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters BERT-Large, Cased (Whole Word Masking): 24-layer, 1024-hidd
标准BERT模型(BERT Large)参数规模只有3.4亿,而此次4810亿的巨型BERT是有史以来最大的一个版本。这俩之间直接差了好几个数量级。而谷歌表示,训练大型模型正是公司的“重中之重”(主要用于云服务)。所以此次他们根本没有参加任何标准分区里的跑分评比,只在非标准区“释放了自我”。MLPerf竞赛有俩分区:Close...
标准BERT 模型(BERT Large)参数规模只有 3.4 亿,而此次 4810 亿的巨型 BERT 是有史以来最大的一个版本。 这俩之间直接差了好几个数量级。 而谷歌表示,训练大型模型正是公司的“重中之重”(主要用于云服务)。 所以此次他们根本没有参加任何标准分区里的跑分评比,只在非标准区“释放了自我”。