classifier_model = BertForSequenceClassification.from_pretrained('bert-base-uncased-finetuned-sst-2-english') # 同样的文本处理 inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=
distilbert-base-uncased-finetuned-sst-2-english 登录注册 开源 企业版 高校版 搜索 帮助中心 使用条款 关于我们 开源企业版高校版私有云模力方舟 Issue 表单模式来袭 提交Issue,填表就好 内容必填选填?你说了算! 精准反馈,高效沟通 我知道了查看详情
在上述代码里,每一个pipeline函数里都可以通过参数指定BERT预训练模型,比如: pl_sentiment = pipeline('sentiment-analysis', model='bert-base-uncased') 在没有指定模型的情况下,缺省使用“distilbert-base-uncased-finetuned-sst-2-english”这个预训练模型,是针对“distilbert-base-uncased”的微调后的模型。想要...
语言模型优化示例 # config.yamlmodel:name:distilbertframework:pytorch_fxtuning:accuracy_criterion:relative:0.01# main.pyimporttorchimportnumpyasnpfromtransformersimport(AutoModelForSequenceClassification,AutoTokenizer)model_name="distilbert-base-uncased-finetuned-sst-2-english"model=AutoModelForSequenceClassifica...
under a tree and an apple hits my head.")但是,我得到以下错误: No model was supplied, defaulted todistilbert-base-uncased-finetuned-sst-2-english and revision af0f99b (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-englishValueError: Could ...
This example code fine-tunesBERT-Baseon the Microsoft Research Paraphrase Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a few minutes on most GPUs. export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 export GLUE_DIR=/path/to/glue python run_cl...
BERT预训练模型是BERT-LARGE-UNCASED-WHOLE-WORD-MASKING-FINETUNED-SQUAD的核心组件。它使用大规模无标注文本数据集进行预训练,如ImageNet, MusicNet, and so on. 通过这些预训练任务,BERT预训练模型可以学习到丰富的自然语言表示,从而提高语言模型的性能。 Word Masking层 Word Masking层是BERT-LARGE-UNCASED-WHOLE...
The methodology delves into diverse text transformation techniques for feature selection and employs three transformer classification models: distilbert-base-uncased, prunebert-base-uncased-6-finepruned-w-distil-mnli, and distilbert-base-uncased-finetuned-sst-2-english. Additionally, the paper outlines ...
This example code fine-tunes BERT-Base on the Microsoft Research Paraphrase Corpus (MRPC) corpus, which only contains 3,600 examples and can fine-tune in a few minutes on most GPUs. export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12 export GLUE_DIR=/path/to/glue python run...
jit.trace(gm, example_inputs, check_trace=False) example_outputs = torchscript(*example_inputs) print("example outputs", example_outputs) return torchscript model_id = 'distilbert-base-uncased-finetuned-sst-2-english' tokenizer = DistilBertTokenizer.from_pretrained(model_id) model = Distil...