注意,这里常用的几个预训练模型,bert-base-cased、bert-base-uncased及中文bert-base-chinese。其中前两个容易混淆。bert-base-cased是区分大小写,不需要事先lower-case;而bert-base-uncased不能区分大小写,因为词表只有小写,需要事先lower-case。 基本使用示例: fromtransformersimportBertModel,BertTokenizerBERT_PATH...
选择合适的模型很重要,比如这次是中文文本的分类。选择用bert-base-uncased只能得到86%的准确率,但是选用bert-base-chinese就可以轻松达到96%。 image-20211025192732926 4、修改bert_cnews.py代码 对68行的代码做修改。原始代码如下: ALL_MODELS=sum((tuple(conf.pretrained_config_archive_map.keys())forconfin(Be...
102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters BERT-Base, Chinese Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters 下载BERT Uncased,然后解压缩: wget https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip && ...
BERT-base, Chinese (Whole Word Masking) : 12-layer, 768-hidden, 12-heads, 110M parameters,地址:https://storage.googleapis.com/hfl-rc/chinese-bert/chinese_wwm_L-12_H-768_A-12.zip 4. 原版英文 BERT 模型 BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340...
bert-large-multilingual-uncased: 编码器具有24个隐层,输出1024维张量,16个自注意力头,共340M参数量,在小写的102种语言文本上进行训练而得到。 bert-base-chinese: 编码器具有12个隐层,输出768维张量,12个自注意力头,共110M参数量,在简体和繁体中文文本上进行训练而得到。
首先我们从transformers库中导入pipeline,并使用pipeline建立一个大语言模型,此模型基于BERT训练好的bert-large-uncased模型,代码运行时会自动下载相关预训练模型。Downloading (…)lve/main/config.json: 100%571/571 [00:00<00:00, 9.51kB/s]Downloading model.safetensors: 100%1.34G/1.34G [00:10<00:...
torch CN_BERT_PATH = './data/bert-base-chinese' EN_BERT_PATH = './data/bert-base-uncased...
在pytorch-pretrained-BERT/pytorch_pretrained_bert/tokenization.py文件中可以看到BERT使用的vocabulary链接,但是不用特殊的上网方式打不开。 PRETRAINED_VOCAB_ARCHIVE_MAP = { 'bert-base-uncased': …
其中Uncased 是字母全部转换成小写,而Cased是保留了大小写。 BERT源码 可以在Tensorflow的GitHub上获取。 本文的demo地址,需要下载BERT-Base, Chinese模型,放在根目录下 2,加载BERT 官方的源码中已经有如何使用BERT的demo。demo中使用了TPUEstimator 封装,感觉不好debug。其实BERT的加载很简单。
nBERT-Base, Multilingual Uncased (Orig, not recommended)(Not recommended, useMultilingual Casedinstead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters nBERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters ...