本文介绍了一种基于BERT-Base-Chinese微调文本相似度模型,重点突出了其中的重点词汇或短语。BERT模型是由Google公司于2018年推出的预训练深度语言模型,它通过双向Transformer架构学习语言表示,取得了在多项NLP任务中的显著性能提升。BERT-Base-Chinese是BERT模型针对中文文本的版本,它对中文文本进行了预训练,并能够学习到中...
下载后文件夹中包含: 1、bert_get_data.py 完成数据集与模型准备: import pandas as pd from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer from torch import nn from transformers import BertModel bert_name = './bert-base-chinese' tokenizer = BertTokenizer.f...
export DATA_DIR=数据所在的路径 export BERT_BASE_DIR=预训练模型所在的路径 python run_classifier.py \ --task_name=news \ --do_train=true \ --do_eval=true \ --data_dir=$DATA_DIR/ \ --vocab_file=$BERT_BASE_DIR/vocab.txt \ --bert_config_file=$BERT_BASE_DIR/bert_config.json \ -...
bert-base-chinese训练新模型要使用bert-base-chinese预训练模型来训练一个新的下游任务模型,你可以遵循以下步骤。这里,我将以一个简单的文本分类任务为例,展示如何利用transformers库和PyTorch来完成这个过程。transformers是Hugging Face团队开发的一个库,它提供了大量预训练模型的实现,并且支持多种深度学习框架。 环境...
一、Bert-Base-Chinese概述 Bert-Base-Chinese是由谷歌开发的Bert模型的中文版本。它是基于Transformer架构的深度双向变换器,通过大规模无标签的中文文本进行预训练。在预训练过程中,Bert模型学习了语言的上下文有关信息,从而提取出丰富的语义表示。 二、安装与配置 要使用Bert-Base-Chinese,首先需要在Python环境中安装相...
BERT-Base-Chinese模型的基本原理是使用Transformer网络结构进行预训练,将大量的文本数据输入到模型中进行训练,从而使模型学习到自然语言的语法、语义等知识。该模型与BERT-Base模型类似,但在预训练过程中使用了中文语料库,因此可以更好地适应中文自然语言处理任务。 BERT-Base-Chinese模型在训练时使用了大量的文本数据,通...
bert-base-chinese是BERT在中文语境下的预训练模型,本文将介绍bert-base-chinese模型的用法和应用。 一、安装和导入BERT库 在使用bert-base-chinese之前,首先需要安装并导入相应的库和模块。可以使用pip命令安装bert-for-tf2库,然后使用import语句将其导入到代码中。 ```python !pip install bert-for-tf2 import ...
本篇我们使用公开的微博数据集(weibo_senti_100k)进行训练,此数据集已经进行标注,0: 负面情绪,1:正面情绪。数据集共计82718条(包含标题)。如下图: 下面我们使用bert-base-chinese预训练模型进行微调并进行测试。 1. 导入必要的库 import torch from transformers import BertTokenizer, BertForSequenceClassification,...
训练 研究人员认为,全词覆盖的 BERT 模型是原有 BERT 模型的改进版本,可以使 BERT 模型学习词的边界。因此,他们没有从零开始训练,而是在官方 BERT 中文模型(BERT-base Chinese)上训练。模型首先在最长样本长度为 128,批大小为 2560,使用 1e-4 的学习率,初始预热为 10% 的条件下训练了 100k 轮,然后在序列长...
Bertbasechinese是BERT的中文预训练模型,专门针对中文文本进行训练和优化。本文将一步一步回答关于Bertbasechinese的用法问题,帮助用户更好地理解和使用这一强大的自然语言处理工具。 2.安装Bertbasechinese 要使用Bertbasechinese,首先需要下载相关的预训练模型文件。这些文件可以从Hugging Face的官方GitHub仓库或者其他可靠...