classBERTMLP(nn.Module):'''@功能:继承nn.Module实现一个BERT+MLP的模型,包括__init__与forward两个方法@输入:bert预训练模型、隐藏层大小、标签类别@输出:数据经过模型的计算结果'''def__init__(self,emdeb,hidden_size,num_class):# 对传入模型的参数在__init__时定义super(BERTMLP,self).__init__(...
他们使用因果参数化替换了这些架构中的 FFT,并完全移除了 MLP 层。所得到的架构完全没有注意力,也完全没有 MLP。 他们在因果语言建模的标准数据集 PILE 上对 M2-GPT 进行了预训练。结果见表 8。 可以看到,尽管基于新架构的模型完全没有注意力和 MLP,但其在预训练的困惑度指标上依然胜过 Transformer 和 Hyena。
他们使用因果参数化替换了这些架构中的 FFT,并完全移除了 MLP 层。所得到的架构完全没有注意力,也完全没有 MLP。 他们在因果语言建模的标准数据集 PILE 上对 M2-GPT 进行了预训练。结果见表 8。 可以看到,尽管基于新架构的模型完全没有注意力和 MLP,但其在预训练的困惑度指标上依然胜过 Transformer 和 Hyena。
他们使用因果参数化替换了这些架构中的 FFT,并完全移除了 MLP 层。所得到的架构完全没有注意力,也完全没有 MLP。 他们在因果语言建模的标准数据集 PILE 上对 M2-GPT 进行了预训练。结果见表 8。 可以看到,尽管基于新架构的模型完全没有注意力和 MLP,但其在预训练的困惑度指标上依然胜过 Transformer 和 Hyena。
BERT的MLP和NSP联合训练,让其能适配下游多任务(Token级别和句子级别)的迁移学习 BERT缺点: [MASK] token在推理时不会出现,因此训练时用过多的[MASK]会影响模型表现(需要让下游任务去适配预训练语言模型,而不是让预训练语言模型主动针对下游任务做优化) 每个batch只有15%的token被预测,所以BERT收敛得比left-to-righ...
用GeGLU层替换旧的MLP层,改进了原始BERT的GeLU激活函数。通过移除不必要的偏置项(bias terms)简化架构,由此可以更有效地使用参数预算。在嵌入层之后添加一个额外的归一化层,有助于稳定训练。接着,在提升速度/效率方面,ModernBERT利用了Flash Attention 2进行改进,依赖于三个关键组件:一是使用交替注意力(...
基于交互的匹配方法不会直接学习query和doc的embedding向量,而是在构建神经网络时让query和doc进行交互,这样可以获得更好的文本表示,最后通过一个MLP网络获得语义匹配的得分。这种方法一般是监督学习的方式,在训练时能够进行充分的交互匹配,并且通过构建训练样本可以增加业务场景的关联,最终也能得到更好的文本表示。但是缺点...
结论就是除了“后缀式”的 P2 之外,其它结果都差不多,这进一步说明了“前缀式”的 Pattern 会比“后缀式”更有竞争力一些。在效果上,直接用同样的数据用常规的方法去微调一个 BERT 模型,大概的结果是 88.93 左右,所以基于 “MLP+Pattern” 的小样...
在intermediate()融合入口函数中,是分别将token emb和实体emb经过一层mlp后,直接相加求和,再经过一层gelu激活函数即可:def forward(self, hidden_states, hidden_states_ent): hidden_states_ = self.dense(hidden_states) hidden_states_ent_ = self.dense_ent(hidden_states_ent) hidden_states = ...
实现下面的MaskLM类来预测BERT预训练的掩蔽语言模型任务中的掩蔽标记。预测使用单隐藏层的多层感知机(self.mlp)。在前向推断中,它需要两个输入:BERTEncoder的编码结果和用于预测的词元位置,输出是这些位置的预测结果。 AI检测代码解析 class MaskLM(nn.Module): ...