BERTBASE和BERTLARGE在所有任务上的性能均优于所有现有系统,相对于最先进水平,平均准确度提高了4.4%和6.7%。请注意,BERTBASE和OpenAIGPT在其注意遮蔽之外的模型架构几乎相同。对于规模最大、报道最广泛的GLUE任务,MNLI、BERT的绝对精度提高了4.7%,超过了最先进水平。在官方GLUE排行榜8上,BERTLARGE得
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文《BERT:语言理解的深度双向变换器预训练》,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量。异于最新语言表征模型,BERT基于所有层的左、右语境来预训练深度双向表征量。BERT是... 查看原文 【论文解读...
与BERT最具可比性的现有预训练方法是OpenAI GPT,它在大型文本语料库中训练左到右的变换器LM。实际上,许多BERT设计决策被有意地选择为尽可能接近GPT,以便最细微地比较这两种方法。这项工作的核心论点是占主要经验改进的3.3节中提出的两个新型预训练任务,但我们注意到BERT和GPT在如何训练之间还存在其他一些差异: GPT...