研究人员列举了三个指标:推理速度,参数大小和错误率,在使用FPTAS下,从一个高性能的BERT中提取一个最优子集,这便是Bort。 在随后初步的测试中,Bort有着不俗的表现。在CPU上,其执行推理的速度比BERT-large快了7.9倍。 此外,在相同的硬件上,对相同的数据集进行预训练,Bort只花费了288个GPU hours。而相...
近期,亚马逊 Alexa 团队发布了一项研究成果:研究人员对BERT模型进行参数选择,获得了BERT的最优参数子集——Bort。 研究结果表明,Bort大小仅为BERT-large的16%,但是在CPU上的速度却快了7.9倍,在NLU基准测试上的性能也优于BERT-large。 这是在NLP模型快速“膨胀”,模型轻量化迫切需求的背景下,一次比较成功的结果。
近期,亚马逊 Alexa 团队发布了一项研究成果:研究人员对BERT模型进行参数选择,获得了BERT的最优参数子集——Bort。 研究结果表明,Bort大小仅为BERT-large的16%,但是在CPU上的速度却快了7.9倍,在NLU基准测试上的性能也优于BERT-large。 这是在NLP模型快速“膨胀”,模型轻量化迫切需求的背景下,一次比较成功的结果。
近期,亚马逊 Alexa 团队发布了一项研究成果:研究人员对BERT模型进行参数选择,获得了BERT的最优参数子集——Bort。 研究结果表明,Bort大小仅为BERT-large的16%,但是在CPU上的速度却快了7.9倍,在NLU基准测试上的性能也优于BERT-large。 这是在NLP模型快速“膨胀”,模型轻量化迫切需求的背景下,一次比较成功的结果。
近期,亚马逊 Alexa 团队发布了一项研究成果:研究人员对BERT模型进行参数选择,获得了BERT的最优参数子集——Bort。 研究结果表明,Bort大小仅为BERT-large的16%,但是在CPU上的速度却快了7.9倍,在NLU基准测试上的性能也优于BERT-large。 这是在NLP模型快速“膨胀”,模型轻量化迫切需求的背景下,一次比较成功的结果。