例如,当一个句子“Tim Cook is currently visiting Beijing now”输入时,首先会经过一个知识层(Knowledge Layer),知识层将知识图谱中关联到的三元组信息(Apple-CEO-Tim Cook、Beijing-capital-China 等)注入到句子中,形成一个富有背景知识的句树(Sentence tree)。 可以看出,通过知识层,一个句子序列被转换成了一个...
增强了动词化的三元组,使得 知识图谱与自然语言文本语料库的整合更加顺畅,也会获得更高的准确率。 除此之外,研究团队还在一个名为 LAMA 的知识探测器上观察到了同样的趋势,该知识探测器使用填充空白问题查询模型。 这篇论文使用 KELM 模型提供了一个公开可用的知识图谱语料库作为自然文本。作者发现,知识图谱语言化可...
学术界和工业界的大佬们,基于BERT提出了一些结合知识图谱的混合模型方案,为我们量身打造出了这样“老师”:比如北大-腾讯联合推出知识赋能的K-BERT模型、百度提出的通过知识集成增强语义表示的模型ERNIE、清华和华为提出的信息实体的增强语义模型ERNIE。
本课程以实⽤为原则,通过10个产业级应用项目,知识覆盖了预训练、词法分析、信息抽取等基础知识,情感分析、知识图谱与智能问答、机器翻译、对话、文本自动生成等NLP应⽤技术和系统,掌握产业实践中的模型部署等。 本课程将带你全面掌握自然语言处理技术,以期更好地帮助各位同学学以致用。通过完成一系列项目课题任务,...
首先本文利用CN-DBpedia、HowNet和MedicalKG作为领域内知识图谱,对每一个句子中包含的实体抽取其相关的三元组,这里的三元组被看作是一个短句(首实体,关系,尾实体),与原始的句子合并一起输入给Transformer模型;针对该方法,本文采用基于可见矩阵的mask机制,如下图所示: ...
最终本文将文本上下文和知识上下文一起用MLM进行预训练,将mask的范围推广到word、entity和relation;为训练该模型,本文采用cpu-gpu混合训练策略结合负采样机制减少训练时间;最终本文提出的方法在知识图谱补全和若干NLP任务上均带来了增益。 5、《Exploiting Structured Knowledge in Text via Graph-Guided Representation Learnin...
1. 现有的实体匹配方法不能充分利用与知识图相关的多模态信息。其中大多数只在知识图中使用关系三元组,...
Google最近在NAACL 2021上发了一篇文章,可以从知识图谱中自动生成文本数据,再也不怕语料不够用了! 大型预训练自然语言处理(NLP)模型,如 BERT、 RoBERTa、 GPT-3、 T5和 REALM,充分利用了来自 Web 的巨型自然语言语料库,对特定任务的标注数据进行微调,获得一个效果特别好的预训练,并在某些NLP任务中甚至超过了人类...
Google最近在NAACL 2021上发了一篇文章,可以从知识图谱中自动生成文本数据,再也不怕语料不够用了! 大型预训练自然语言处理(NLP)模型,如 BERT、 RoBERTa、 GPT-3、 T5和 REALM,充分利用了来自 Web 的巨型自然语言语料库,对特定任务的标注数据进行微调,获得一个效果特别好的预训练,并在某些NLP任务中甚至超过了人类...
最后融入知识的上下文表示可以通过一个线性转变得到\hat{\mathbf{t}}=\mathbf{W}[\mathbf{t} ; \mathbf{c}(t)] Hierarchical Self-Attention 提出了一种层次化自注意力机制,以利用对话的结构表示形式并学习上下文话语的向量表示形式。 第一步,对于utteranceX_{n}^{i},可以表示为:\hat{\mathbf{X}}{n}^{...