直觉上,当 Batch Size 增大时,每个 Batch 的梯度将会更准,所以步子就可以迈大一点,也就是增大学习率,以求更快达到终点,缩短训练时间,这一点大体上都能想到。问题就是,增大多少才是最合适的呢? 02 二次方根 这个问题最早的答案可能是平方根缩...
说下结论:从方差的角度来分析,有两个角度来说明学习率应该和Batch size的关系,一个是呈现根号的关系,也即Batch size增大x倍,学习率增大根号x倍,另一个角度是呈现线性的关系,也即Batch size增大x倍,学习率增大x倍。从损失的角度来分析,学习率随着Batch Size的增加而单调递增但有上界。 方差角度 作者明确了自2014...
其中,批大小和学习率是至关重要的。虽然人们普遍认为这两个参数之间存在相反的关系,但实际上它们的关系更加复杂。本文旨在揭示这种关系,探讨这些参数如何相互作用并影响神经网络的学习动态。 在机器学习领域,批大小和学习率之间的关系就像是一场舞蹈:找到正确的节奏和平衡对于和谐的表现至关重要。 理解Batch Size(批...
因此当 Batch size 超过时,增加的信息不足以抵消带来的噪声影响,从而导致此次的更新不再那么确信,以至于需要降低学习率。 观察到的下降区间 为了检验理论的正确性,需要从实验中观察到最优学习率的 “下降区间”。既然从上一节的分析中发现,使用 Adam 优化器时 Batch size 超过就会导致最优学习率下降,那么只要确定...
(1)如果增加了学习率,那么batch size最好也跟着增加,这样收敛更稳定。 (2)尽量使用大的学习率,因为很多研究都表明更大的学习率有利于提高泛化能力。如果真的要衰减,可以尝试其他办法,比如增加batch size,学习率对模型的收敛影响真的很大,慎重调整。 (3)在使用单机多卡的分布式训练的条件下,batch size和学习率要随...
通过增加学习率ϵ、缩放 batch size B∝ϵ,我们可以进一步减少参数更新的数量。最后,你可以增加动量系数 m,缩放 B∝1/(1−m),尽管这会稍微降低测试准确率。最重要的是,该技术能让我们在不调整超参数的情况下,重设对大型 batch 训练的现有训练调度方法(schdule)。我们在 ImageNet 上训练 ResNet-v2,...
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。 1.学习率 学习率是训练神经网络的重要超参数之一,它代表在每一次迭代中梯度向损失函数最优解移动的步长,通常用$\eta$表示。它的大小决定网络学习速度的快慢。在网络训练过程中,模型通过样本数...
学习率、batch_size、dropout 1、学习率 1.1、学习率取值要适当 当学习率很低的时候,跑了多次损失还是很大,此时需要加大迭代次数,浪费计算资源。 当学习率很大的时候,loss可能为nan,因为求导的时候可能会除以0。 1.2、优化算法如何找到合适的学习率 方法一:...