随着深度学习的不断发展,衍生出了各种各样的归一化(Normalization)方法,此篇博文对其基本概念进行梳理和总结,主要包括批量归一化(Batch Normalization,BN)[1],层归一化(Layer Normalization,LN)[2],实例归一化(Instance Normalization,IN)[3],组归一化(Group Normalization,GN)[4]。 注:笔者水平有限,文中可能存在不...
Batch / Layer / Instance / Group Normalization:有着相同的计算公式: y=γ(x−μ(x)σ(x))+β ,不同的是特征 x 的选取。计算步骤通常包括以下几个阶段: 1.计算均值(Mean): 计算输入数据的均值,这是对选定的特征值(如一个batch、一个样本、一个通道组等)进行算术平均。 2.方差(Variance): 计算输入...
当group=channel 时,GroupNorm 等价于 InstanceNorm;当 group=1 时,GroupNorm 等价于 LayerNorm。 GroupNorm 会进行 batch * group 次归一化。 总结# BatchNorm 很强大。但如果 batch_size 的影响过分恶劣(例如 batch_size 小于 8),使用 GroupNorm 值得一试。 LayerNorm 更适合 RNN 和 NLP 领域;BatchNorm ...
Batch Normalization和Weight Normalization都是属于参数重写(Reparameterization)的方法,Layer Normalization不是。 1、Weight Normalization与Batch Normalization对比 Weight Normalization和Batch Normalization都属于参数重写(Reparameterization)的方法,只是采用的方式不同,Weight Normalization是对网络权值W进行normalization(L2 norm),...
Batch Normalization、Layer Normalization、Group Normalization、Instance Normalization原理、适用场景和使用经验 一、 简单介绍各种Normalization 先放一张来自Group Normalization原论文中的图,个人认为这个图很形象,以此图直观感受一下各种归一化的区别: ...
本文深入探讨了深度学习领域中Batch Normalization(BN)、Layer Normalization(LN)、Instance Normalization(IN)以及Group Normalization(GN)的概念及其作用。尽管BN已成为神经网络结构中不可或缺的一部分,但其在解决内部变量分布迁移(Internal Covariate Shift, ICS)问题上的作用仍然存在一定的误解。ICS指...
七种normalization 1. Normalization 动机 原理 优点 缺点 2. Batch Normalization 动机 原理 优点 缺点 3. Layer Normalization 动机 原理 优点 4. Instance Normalization 动机 原理 优缺点 5. Group Normalization 动机 原理 6. Weight Normalization 动机 ...
Swin Transformer,使用了**Layer Normalization** **Group Normalization**有时候会代替BN用在我们常见的网络中 **Instance Normalization**在Gan、风格迁移类模型中经常用到 上述是老潘见到过的一些例子,也算是抛砖引玉。这些不同的标准化方法,说白了就是**不同维度**的标准化,有的时候稍微改变一下代码就可以互...
四. Layer Normalization、Instance Normalization及Group Normalization 4.1 Layer Normalization 为了能够在只有当前一个训练实例的情形下,也能找到一个合理的统计范围,一个最直接的想法是:MLP的同一隐层自己包含了若干神经元;同理,CNN中同一个卷积层包含k个输出通道,每个通道包含m*n个神经元,整个通道包含了k*m*n个...
在深度学习领域,归一化层是优化神经网络训练过程的关键技术之一,Batch Normalization(BatchNorm)、Layer Normalization(LayerNorm)、Instance Normalization(InstanceNorm)、以及Group Normalization(GroupNorm)等方法,都是为了缓解梯度消失(Vanishing Gradient)和梯度爆炸(Exploding Gradient)问题,以及内部...