所以问题的描述明明可以从【Hilbert space 是 Banach space 的特例】这儿开始,在此之前一半的篇幅除了让...
Hilbert spaceFixed pointsMultivalued mapSome fixed point convergence properties are proved for compact and demicompact maps acting over closed, bounded and convex subsets of a real Hilbert space. We also show that for a generalized nonexpansive mapping in a uniformly convex Banach space the Ishikawa...
In this chapter let us show that the irreducible parts ν, 'ν (see VII § 5.4) permit a representation by Hilbert space operators, i.e. for ν, 'ν there is a Hilbert space ν over the field R of real numbers or over the C of complex numbers or over the Q of quaternions where...
Classical involutive Lie algebras of finite rank operators Pierre de la Harpe Pages 23-71 Classical involutive Banach-Lie algebras and groups of bounded and compact operators Pierre de la Harpe Pages 72-114 Examples of infinite dimensional Hilbert symmetric spaces ...
是泛函分析中最重要的结果之一,因为许多其他结果都需要它,而且还因为它概括了分析的精神。该定理由 Hahn 于 1927 年独立证明,由 Banach 于 1929 年独立证明,尽管 Helly 在 1912 年更早地证明了不太通用的版本。有趣的是,复杂版本直到 1938 年才由 Bohnenblust 和 Sobczyk 证明。我们使用Zorn 引理证明 Hahn-Ban...
The main purposes of this paper are (1) To survey the area of coarse embeddability of metric spaces into Banach spaces, and, in particular, coarse embeddability of different Banach spaces into each other; (2) To present new results on the problems: (a) Whether coarse non-embeddability into...
热门 还没人写过短评呢 << 首页 < 前页 后页> > Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space 作者: Harpe, P. De La 页数: 160 isbn: 3540059849 书名: Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space©...
let h be a complex hilbert space and let \(\mathcal {l}(h)_{\operatorname {sa}}\) denote the (real) banach space of self-adjoint bounded linear operators on h , endowed with the cone of positive semi-definite operators. for every \(x \in h\) , define the functional \(\varphi...
Hilbert modules involving Banach space valued random variablesDumitru Ga
Given any quasi-Banach space X which coarsely embeds into a Hilbert space, we compute its Hilbert space compression exponent. We also show that the Hilbert space compression exponent of X is equal to the supremum of the amounts of snowflakings of X which admit a bi-Lipschitz embedding into...