词袋模型中关键的一步是要生成词典,对图片来说即是要生成“视觉词典”,而这首先需要提取图片的特征形成图片特征描述子集合,然后通过聚类的方式形成视觉单词,从而形成视觉词典。再统计待分类图片的词频,通过分类器即可实现对图片的分类或高级语义的理解。 基于词袋模型的图片分类基本流程 如引言所述,基于词袋的模型首先需...
基于BagofWords的木材识别研究_陆跃辉
在DLP领域里,bow(bag of word)是一个稀疏的向量,向量的每个元素记录词的出现次数,相当于对每篇文章都关于词典做词的直方图统计。同样的道理用在computer vision领域,图像由一些基础的特征构成,每幅图像就是对这些特征的一个统计分布,在做图像分类时会假设相似图像他们的特征统计分布也符合一定的模型。于是从这句话里...
词袋模型中关键的一步是要生成词典,对图片来说即是要生成“视觉词典”,而这首先需要提取图片的特征形成图片特征描述子集合,然后通过聚类的方式形成视觉单词,从而形成视觉词典。再统计待分类图片的词频,通过分类器即可实现对图片的分类或高级语义的理解。 基于词袋模型的图片分类基本流程 如引言所述,基于词袋的模型首先需...