什么是 Azure? 开始使用 Azure 全球基础结构 数据中心区域 信任云 Azure Essentials 客户案例 产品和定价 产品 Azure 定价 免费Azure 服务 灵活的购买选项 Azure 上的 FinOps 优化成本 解决方案和支持 解决方案 用于加速增长的资源 解决方案体系结构 支援 Azure 演示和实时问答 合作伙伴 Azure 市场...
azureml.train.hyperdrive azureml.train.sklearn azureml.training.tabular azureml.widgets azureml.contrib.automl.pipeline.steps azureml.contrib.fairness azureml.contrib.functions azureml.contrib.notebook azureml.contrib.pipeline.steps azureml.contrib.compute ...
完整示例可从 https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/training/train-on-amlcompute/train-on-amlcompute.ipynb 获取 delete 从其关联的工作区删除 Compute 对象。 由ComputeTarget 的子类实现此抽象方法。 Python 复制 abstract delete() 例外 展开表 类型说明 Compu...
Expand all Collapse all Explore Azure What is Azure? Get started with Azure Global infrastructure Datacenter regions Trust your cloud Azure Essentials Customer stories Products and pricing Products Azure pricing Free Azure services Flexible purchase options ...
azure.ai.ml.entities._compute.compute.Compute VirtualMachineCompute Konstruktor Python VirtualMachineCompute(*, name: str, description: str |None=None, resource_id: str, tags: dict |None=None, ssh_settings: VirtualMachineSshSettings |None=None, **kwargs: Any) ...
azureml.train.hyperdrive azureml.train.sklearn azureml.training.tabular azureml.widgets azureml.contrib.automl.pipeline.steps azureml.contrib.fairness azureml.contrib.functions azureml.contrib.notebook azureml.contrib.pipeline.steps azureml.contrib.compute azureml.contrib.train azure...
AnAzure Machine Learning workspacewith a compute cluster(Minimum number of nodes as 0 andMaximum number of nodes as 1 or higher). Basic knowledge of Azure services and Machine learning. 2. Limitations Azure ML can have a maximum of 50 managed online endpoints per subscription. S...
Learn more about Azure Machine Learning. ML Studio (classic) documentation is being retired and may not be updated in the future.Rescales numeric data to constrain dataset values to a standard rangeCategory: Data Transformation / Scale and ReduceNote...
上代码: #利用pandas读取csv文件 def getNames(csvfile): data = pd.read_csv(csvfile,delimiter='|') # 1--读取的文件编码问题有待考虑 names = data['EnName'] return names 读取EnName这一列
This feature is useful in cases where the same query is executed multiple times. With this, the query will use the cache and not scan the data each time which can help save compute. Query Results cache can be set using a simple command to set cache maximum age as...