使用下列程式碼來取代 Index(model) 動作。 它現在會在 paging 欄位為 Null 時處理該欄位,或設定為 "next",並處理對 Azure 認知搜尋的呼叫。 C# 複製 public async Task<ActionResult> Index(SearchData model) { try { InitSearch(); int page; if (model.paging != null && model.paging == "next...
开始使用 Azure 案例研究 案例研究 案例研究 返回“客户案例”部分 获取Azure 移动应用
Facebook OG tags: Search using generative AI with Microsoft Azure. Chat with your data through full-text search, vector search, semantic ranker, hybrid search, and more.
在 Index(SearchData model) 方法中,向搜索参数添加以下行 。 cs 复制 options.OrderBy.Add("Rating desc"); 备注 默认顺序为升序,但可向属性添加 asc 来明确这一点。 降序排序通过添加 desc 进行指定。 现在运行应用,再输入任意常见搜索词。 不清楚结果是否按正确顺序显示,因为你(开发人员)和用户都没法...
web_search_url str 必应对此项目的搜索结果的 URL。 follow_up_queries list[Query] 方法 as_dict 返回可以使用 json.dump 的 JSONify 的 dict。 高级用法可以选择使用回调作为参数: Key 是 Python 中使用的属性名称。 Attr_desc是元数据的一个听写。 当前包含具有 msrest 类型的...
azure.cognitiveservices.search.videosearch.operations.VideosOperations class 使用英语阅读 保存 添加到集合 添加到计划 通过 Facebookx.com 共享LinkedIn电子邮件 打印 你当前正在访问 Microsoft Azure Global Edition 技术文档网站。 如果需要访问由世纪互联运营的 Microsoft Azure...
Create your Azure Cognitive Search instance and populate an index with clinical trials docs Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us...
This post goes deeper into the Bing technology that made semantic search possible. We also encourage you to read the post “Introducing semantic search: Bringing more meaningful results to Azure Cognitive Search(opens in new tab),” which explains what new capabilities are...
A Cognitive Skill is a Feature of Azure Search designed to Augment data in a search index. What is a Skill in terms of the Skills Extractor? A Skill is a Technical Concept/Tool or a Business related/Personal attribute. Example skills: Machine Learning, Artificial Intelligence, PyTorch, Busines...
Embedding each chunk into its own vector keeps the input within the embedding model’s token limit and enables the entire document to be searchable in an ANN search index without truncation. Most deep embedding models have a limit of 512 tokens. Ada-002 has a limit of ...