通过前面的叙述,我们已经知道axis=0表示最高维,axis=1表示次高维,依次下去。因此,对于三维数组来说,axis=0指的就是最高维(三维),axis=1指的就是次高维(二维),那么axis=2指的就是最低维(一维)。 当axis=0的时候,指的就是,最高维三维变化,其他维度不变化的数据会成为一组,因此x[0][0][0]、x[1][0]...
>>> df.mean(axis=1) 0 1 1 2 2 3 然而,如果我们调用 df.drop((name, axis=1),我们实际上删掉了一列,而不是一行: >>> df.drop("col4", axis=1) col1 col2 col3 0 1 1 1 1 2 2 2 2 3 3 3 Can someone help me understand what is meant by an "axis" in pandas/numpy/scipy?
Python之NumPy(axis=0 与axis=1)区分 https://www.cnblogs.com/rrttp/p/8028421.html 其实问题理解axis有问题,df.mean其实是在每一行上取所有列的均值,而不是保留每一列的均值。也许简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across),作为方法动作的副词(译者注)...
axis仅仅表示这个方法的执行方向 0纵向 1横向 mean(axis=1) 就是每行保留均值 drop(xx,axis=1) 就是每行删除xx
axis=1为横向,axis=0为纵向 可知:对一维数组,只有第0轴,没有第1轴 c = np.array([[0, 2, 1], [3, 5, 6], [0, 1, 1]]) print c.sum()print c.sum(axis=0)print c.sum(axis=1) # print(df.mean(axis=1)) # plt.plot(df.mean(axis=1)) # plt.show()...
通过前面的叙述,我们已经知道axis=0表示最高维,axis=1表示次高维,依次下去。因此,对于三维数组来说,axis=0指的就是最高维(三维),axis=1指的就是次高维(二维),那么axis=2指的就是最低维(一维)。 当axis=0的时候,指的就是,最高维三维变化,其他维度不变化的数据会成为一组,因此x[0][0][0]、x[1][0]...
当axis=0的时候,指的就是,最高维三维变化,其他维度不变化的数据会成为一组,因此x[0][0][0]、x[1][0][0];x[0][1][0]、x[1][1][0];x[0][0][1]、x[1][0][1];x[0][1][1]、x[1][1][1]各自成为一组,你把这组内对应元素相加就是x.sum(axis=0)的答案了。
axis=1,从水平方向看,2和3是3更大些,所以返回为1;5和4是5更大,返回为0;0和1是1更大,返回为1 二维数组的axis=-1相当于axis=1,表示的是倒数第一个 这里其实表示就很清楚了,也就是不同方向指向最大的值的索引。 —3.3三维数组 具体代码 importnumpy as npa= np.arange(24).reshape([4,3,2]) #...
axis=0代表跨行(down) axis=1代表跨列(across) 使用0值表示沿着每一列或行标签\索引值向下执行方法使用1值表示沿着每一行或者列标签模向执行对应的方法
另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释: 轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。 所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1) 代表...