最典型的命令式的框架莫过于 PyTorch,它构建的则是一个动态图。动态图指程序会按照我们编写命令的顺序执行计算流程。与静态图相比,动态图更易于编程和调试,而静态图则侧重于优化和性能的提升。 4. Recommended Reading (NeurIPS’18) Automatic differentiation in ML: Where we are and where we should be going...
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A. Automatic differentiation in pytorch. In: NIPS Workshop. 2017. Kinnunen T, Hautamäki V, Fränti P. On the use of long-term average spectrum in automatic speaker recognition. In:...
Automatic differentiation in pytorch NIPS-W (2017) Google Scholar [53] J. Cohen A coefficient of agreement for nominal scales Educ. Psychol. Meas., 20 (1) (1960), pp. 37-46 CrossrefGoogle Scholar [54] M. Sokolova, G. Lapalme A systematic analysis of performance measures for classificatio...
Automatic Differentiation in PyTorch. In Proceedings of the NIPS Autodiff Workshop, Long Beach, CA, USA, 8 December 2017. [Google Scholar] Chen, K.; Seuret, M.; Liwicki, M.; Hennebert, J.; Ingold, R. Page segmentation of historical document images with convolutional autoencoders. In ...
Automatic differentiation in PyTorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 8 December 2017. 34. Rother, C.; Kolmogorov, V.; Blake, A. "GrabCut": Interactive Foreground Extraction Using Iterated Graph Cuts. ACM Trans...
Automatic Differentiation in PyTorch. In Proceedings of the NIPS 2017, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] Bottou, L. Large-Scale Machine Learning with Stochastic Gradient Descent. In COMPSTAT′2010, Proceedings of the 19th International Conference on Computational Statistics,...
[51]. In particular, the pretrained 11-, 13-, 16-, and 19-layer VGG versions were available in PyTorch with or without additional batch-normalization [52] layers. Historically, the batch-normalization (BN) technique [52] was discovered after the publication of VGG [38], and therefore BN ...