训练完Auto-encoder后,由于Decoder是接受一个向量,生成一个输出(例如图像),那么就可以认为这个Decoder就是一个生成器,因此可以单独拿出来作为一个生成器使用: 8.2、压缩 将Encoder训练完成后它相当于接受一个输入(例如图片)然后得到向量,那么这个向量通常是低维度的,那么我们可以认为是进行了压缩,而Decoder就是进行了解...
自编码器(AutoEncoder)是一种无监督学习方法。常用于数据降维,特征提取和生成建模等。自编码器通常由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器利用函数 h=g(x) 将输入压缩为潜在空间表征(Lat…
可以看到上述结构只有一个隐藏层,从输入到隐藏层即为Encoder(编码器),从隐藏层到输出即为Decoder(解码器)。 那么自编码器这么简单的结构如何达到降维的目的呢?我们知道,一个最简单的自编码器(上图所示)只有三层结构,编码器将输入进行编码,变成中间结果,中间结果再经过解码器还原,这种输入等于输出的结构没有什么实际...
1编码器(Encoder): 将高维输入数据映射到低维隐含表示空间。2解码器(Decoder): 将低维隐含表示还原为...
一、auto-encoder auto encoder是一个基本的生成模型,以encoder-decoder的架构进行先编码(如将图像压缩成更低维度向量),再解码(如将刚才的低维向量还原为图像),并且还原出的图像和原图像越接近越好,reconstruction error。常见的transformer模型就是这种auto-encoder模型(其实FCN的卷积和反卷积也是这样)。
一般来说,自动编码器主要由三部分过程,即encoder,code和decoder。图示如下: 接着我们来介绍这三部分的作用: 编码器Encoder:网络的这一部分作用为将输入压缩为潜在空间表示。编码器将输入图像编码为降维的压缩表示。 压缩表示Code:网络的这一部分表示送到解码器的压缩输入 ...
可以看到上述结构只有一个隐藏层,从输入到隐藏层即为Encoder(编码器),从隐藏层到输出即为Decoder(解码器)。 一提到降维,首先想到的肯定是主成分分析(PCA),PCA具体原理可以参考:PCA系列(一):降维基础知识及PCA原理总结 那么自编码器这么简单的结构如何达到降维的目的呢?我们知道,一个最简单的自编码器(上图所示)只...
降维算法——自编码器(Autoencoders)是一种无监督的神经网络,主要用于数据的压缩和特征学习。它们通过学习输入数据的表示来重构输入数据。自编码器由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器将输入数据压缩成较低维度的表示,而解码器则将这个表示重构回原始数据。一、应用场景 - 特征学习:自编码...
从上图可以看到两个部分:第一个部分是编码器(Encoder),第二个部分是解码器(Decoder),编码器和解码器都可以是任意的模型,通常使用神经网络作为编码器和解码器。输入的数据经过神经网络降维到一个编码(code),接着又通过另外一个神经网络去解码得到一个与输入原数据一模一样的生成数据,然后通过比较这两个数据,最小化...
构建一个自编码器需要两部分:编码器(Encoder)和解码器(Decoder)。编码器将输入压缩为潜在空间表征,可以用函数f(x)来表示,解码器将潜在空间表征重构为输出,可以用函数g(x)来表示,编码函数f(x)和解码函数g(x)都是神经网络模型。 所以,我们大致搞清楚了自编码器是一种让输入等于输出的算法。但仅仅如此吗?当然不...