auto_arima函数会根据给定的时间序列数据自动选择合适的ARIMA模型,并返回最佳参数。 auto_arima函数的一些参数说明: seasonal:是否考虑季节性,默认为False。 m:季节性周期,默认为1。 auto_arima函数的返回值model是一个ARIMA模型对象,可以通过model.get_params()方法获取最佳参数。
4. 使用auto_arima拟合模型 接下来,我们使用auto_arima函数来自动选择最优模型。 # 拟合模型model=pm.auto_arima(data['value'],# 替换为你的数值列seasonal=False,# 如果是季节性数据设置为Truestepwise=True,# 使用逐步搜索trace=True)# 显示拟合过程# 输出模型摘要print(model.summary()) 1. 2. 3. 4. ...
然后,在你的Python代码中导入auto_arima函数: from pmdarima.arima import auto_arima 3. 参数说明 y (array-like or iterable, shape=(n_samples,)): 时间序列数据。 start_p (int, optional, default=2): AR项(自回归项)的最大阶数开始值。 start_q (int, optional, default=2): MA项(移动平均项...
auto_arima()是用于自动识别ARIMA模型(自回归移动平均模型)的Python库statsmodels中的一个函数。它可以根据数据的特点自动选择最佳的模型参数,从而大大简化了ARIMA模型的建模过程。下面将详细介绍auto_arima()的用法。 一、安装库和导入库 在使用auto_arima()之前,需要先安装statsmodels库。可以通过以下命令在终端或命令提...
python auto_arima 参数详解 这里应该是拿min/max(更适合处理可迭代对象,可选的参数是key=func)与np.min/np.max(可适合处理numpy.ndarray对象,可选的参数是axis=0或者1)作比较,只不过np.argmin/np.argmax的用法与np.min/np.max相似,这里就不进行更正了。
你可以使用多种不同的方法进行时间序列预测,我们将在本文中讨论Auto ARIMA,它是最为有效的方法之一。 首先,我们来了解一下ARIMA的概念,然后再进入正题——Auto ARIMA。为了巩固概念,我们将使用一个数据集,并用Python和R实现它。 目录 一、什么是时间序列? 二、时间序列预测的方法 三、ARIMA简介 四、ARIMA实现步骤...
首先,我们来了解一下ARIMA的概念,然后再进入正题——Auto ARIMA。为了巩固概念,我们将使用一个数据集,并用Python和R实现它。 目录 一、什么是时间序列? 二、时间序列预测的方法 三、ARIMA简介 四、ARIMA实现步骤 五、为什么需要Auto ARIMA?...
Python pmdarima auto_arima是一个用于时间序列分析和预测的Python库。它是基于ARIMA模型的自动化工具,可以帮助用户选择最佳的ARIMA模型参数。 ARIMA(自回归移动平均模型)是一种常用的时间序列分析方法,用于对时间序列数据进行建模和预测。ARIMA模型包括三个部分:自回归(AR)、差分(I)和移动平均(MA)。auto_arima函数是pm...
/usr/local/lib/python2.7/site-packages/pyramid/arima/approx.py in () 16 # 因为平台可能会命名 .so 文件一些时髦的东西(比如 17 # _arima.cpython-35m-darwin .so),绝对而不是相对地导入它。 —> 18 from pyramid.arima._arima import C_Approx 19 20 all = [导入错误:无法导入名称 C_Approx原文...