AUC(Area Under Curve)值表示ROC曲线下的面积,是评估二分类模型性能的量化指标。AUC值越大,表示模型性能越好。AUC值的取值范围为[0, 1],当AUC = 0.5时,表示模型性能与随机猜测相当;当AUC = 1时,表示模型能够完美区分正负样本。 优点 不依赖于分类阈值:AUC值是对模型整体性能的评估,不依赖于特定的分类阈值。
在上一篇文章中,我们了解了评价一个二分类的机器学习分类器好坏四个常见指标:Accuracy、Precision、Recall、F1 Score。本文介绍另外两个指标:ROC-AUC和PR-AUC。 ROC曲线 ROC(Receiver Operating Characteristic)曲线的全称是受试者工作特征曲线。ROC曲线最早在二战期间用在电子工程和雷达工程中,用于军事目标检测。后来也...
5.金融场景中的指标(KS,ROC,AUC) KS:在风控中,KS常用于评估模型区分度。区分度越大,说明模型的风险排序能力(ranking ability)越强。 K-S曲线与ROC曲线类似,不同在于: ROC曲线将真正例率和假正例率作为横纵轴; K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。 公式如下KS=max(TPR−...
AUC就是ROC曲线下的面积,衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。假定ROC曲线是由坐标为 的点按序连接而形成,参见图2,则AUC可估算为公式3。 六、AUC面积的意义 AUC是衡量二分类模型优劣的一种评价指标,表示预测的正...
ROC曲线与AUC面积都是评判模型结果的指标,因此属于模型评估的一部分。此外,ROC曲线与AUC面积均多用于判断分类器(Classifier)的优劣,因此适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。
ROC 曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc 曲线上每个点反映着对同一信号刺激的感受性。 对于分类器或者说分类算法,评价指标主要有precision,recall,F1 score等,以及这里要讨论的ROC和AUC。下图是一个 ROC 曲线的示例: ...
ROC全称是“受试者工作特征”(Receiver Operating Characteristic)。 ROC曲线的面积就是AUC(Area Under Curve)。 AUC用于衡量二分类问题机器学习算法的性能(泛化能力)。 ROC曲线,通过将连续变量设定出多个不同的临界值,从而计算出一系列正真率和假正率,再以假正率为横坐标、正真率为纵坐标绘制成曲线,曲线下面积越...
继上篇文章评价指标(一)精确率,召回率,F1-score,除了上述三个指标,这次深入讲述何为ROC与AUC,以及它们是如何工作的。 ROC ROC(Receiver Operating Characteristic)翻译过来就是“受试者工作特征”,源于二战中用于敌机检测的信号雷达分析术,后来引入到机器学习的领域,当然,前提还是针对二分类问题。
Python 实现的逻辑回归后,不像 SAS 那样会自动给出模型精确度的评价,需要人为操作计算 Python 专属的 AUC (Area Under Curve),ROC 曲线与 X 轴围成的面积大小反映了模型的精度。本文将着重 AUC 值和 ROC 曲线背后的原理和 Python 代码实现。 下图为利用 SAS 进行逻辑回归后的模型评价表,c 为模型精度 ...
对于分类模型,常用的指标有混淆矩阵、ROC曲线,AUC值,KS曲线以及KS值、Lift图,Gain图等,查阅了很多的资料,加入自己的理解整理了一下他们的计算方法和意义,希望对大家有帮助。 1. 混淆矩阵---确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别...